0
2011 Design of Medical Devices Conference Abstracts

Hemodynamic Changes Induced by Pneumoperitoneum and Measured With ECOM OPEN ACCESS

[+] Author and Article Information
Timothy Shine, David Corda, Stephen Aniskevich, Bruce Leone, Neil Feinglass, Sorin Brull

Mayo Clinic

Booyeon Han

Princeton University

J. Med. Devices 5(2), 027504 (Jun 03, 2011) (1 page) doi:10.1115/1.3589225 History: Published June 01, 2011; Online June 03, 2011
FIGURES IN THIS ARTICLE

Laparascopic surgery required inducing a pneumoperitoneum during surgery and anesthesia this presents unique hemodynamic challenges for the anesthetic management of patients. We monitored hemodynamic management using ECOM endotracheal tubes the parameters are derived using Bioimpedance Cardiac output, stroke volume variability, and systemic vascular resistance were measured using this technology. Pneumoperitoneum results in intra-abdominal pressure of 15–20 mm hg induced by CO2 insufflation Hemodynamic parameters were measured using a new noninvasive device, the endotracheal cardiac output monitor (ECOM) (ConMed Corporation, Utica, NY). This monitor provides measurements—including cardiac output, systemic vascular resistance, and stroke volume variation—which were previously unavailable noninvasively. The results obtained were consistent with those found in the literature (1–4). Based on our assessment, it appears that ECOM derived hemodynamic changes are similar to those obtained invasively. Therefore, ECOM’s noninvasive method to measure cardiac output seems advantageous when considering patient safety, because it is less invasive. A better understanding of the applicability and reliability of this new technology in the clinical setting is important for patient safety.

Copyright © 2011 by American Society of Mechanical Engineers
This article is only available in the PDF format.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In