0
2011 Design of Medical Devices Conference Abstracts

Simultaneous In Vivo Assessment of Contractile Properties and Electromyographic (EMG) Activities in a Knock-Out Mouse Model of Myotonic Dystrophy OPEN ACCESS

[+] Author and Article Information
Oliver Bandschapp, Charles Soule, Paul A. Iaizzo

University of Minnesota

J. Med. Devices 5(2), 027527 (Jun 14, 2011) (1 page) doi:10.1115/1.3590863 History: Published June 14, 2011; Online June 14, 2011
FIGURES IN THIS ARTICLE

Myotonic dystrophy is a dominantly inherited disorder characterized by myotonia and delayed muscle relaxation due to repetitive action potentials in the muscle fibers (hyperexcitability). In this study, a knockout mouse model for the muscle blind proteins (Mbnl1ΔE3ΔE3), a valid model for myotonic dystrophy, was assessed, using an in vivo force assessment device, used in conjunction with EMG recording. The aim of the study was to verify whether the muscle force assessment device we developed was capable to sensitively detect the typical characteristics of myotonic muscle. To date, two wild-type and four myotonic female mice have been assessed. After anesthetic induction by isoflurane, the mice were positioned in the apparatus. Hindlimb muscles were stimulated noninvasively by electrodes placed on the muscle of the leg being stimulated. After establishing optimal muscle length, muscle force was assessed after single pulse stimulation at supramaximal voltage followed by double, triple and quadruple pulses. Both legs from each animal were tested and included in the analyses. Muscle force characteristics (peak force, half relaxation time, and area under the force curve (AUC)) and EMG data were recorded and analyzed. Peak forces generated in the myotonic mice were significantly lower (P<0.02), half relaxation times significantly prolonged (P<0.02), and AUCs significantly increased (P<0.002) as compared with the wild-type mice. The recorded EMGs showed characteristic after depolarizations for the myotonic mice. In conclusion, the muscle force assessment device we developed here was able to detect the typical myotonic features in both reproducible and sensitive ways. This device can be considered as a valid tool for future projects concentrating on the in vivo effects of anesthetic agents or therapies on mouse models of myotonia.

Copyright © 2011 by American Society of Mechanical Engineers
This article is only available in the PDF format.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In