0
2008 Design of Medical Devices Conference Abstracts

Design of Novel Catheter Insertion Device OPEN ACCESS

[+] Author and Article Information
Erik K. Bassett, Alexander Slocum

 Massachusetts Institute of Technology, Cambridge, USA

J. Med. Devices 2(2), 027558 (Jun 25, 2008) (1 page) doi:10.1115/1.2936119 History: Published June 25, 2008

Abstract

Poor positioning of needles and catheters may result in repeated attempts at correct placement, injury to adjacent structures or infusions into inappropriate spaces. Existing catheter insertion methods do not uniformly provide feedback of the tip location, nor prevent the needle from going beyond the target space. The purpose of this research was to develop a design tool to be used to create a new catheter insertion device. This device would advance a needle in firm tissue but automatically release it upon entrance into the desired space. The system studied consisted of a flexible filament (OD 0.9mm) in compression passing through a tube (ID 1.22mm) with both straight and curved sections. A mathematical model based on oil drilling methods was developed to predict the compressive force dissipated in the filament for any given tube geometry. A correction factor on one of the two terms in the model was necessary to achieve best results, but proved to be accurate for all 100+ tests completed. With it, this model accounted for the following parameters: Angular displacement of tube bends, radial clearance, coefficient of friction, lengths, tube and filament radii, number of bends, moment of inertia, and modulus of elasticity. Implementation of this model should allow for a more safe and effective catheter insertion device.

Copyright © 2008 by American Society of Mechanical Engineers
Topics: Design , Catheters
This article is only available in the PDF format.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In