2008 Design of Medical Devices Conference Abstracts

On Formation of Uniform Microspheres for Drug Delivery Using a Perforated Silicon Membrane: A Preliminary Study OPEN ACCESS

[+] Author and Article Information
K-.Y. Song, W. J. Zhang

 University of Saskatchewan, Saskatoon, SK, Canada University of British Columbia, Vancouver, B.C., Canada

U. Häfeli, B. Stoeber, M. Chiao

 University of Saskatchewan, Saskatoon, SK, Canada University of British Columbia, Vancouver, B.C., Canada

J. Med. Devices 2(2), 027533 (Jun 18, 2008) (1 page) doi:10.1115/1.2932346 History: Published June 18, 2008


A novel method to generate uniform biodegradable microspheres for drug delivery applications has been developed. A liquid phase containing the dissolved microsphere matrix material reaches a continuous phase through a silicon membrane with micron-sized perforations, where it forms microdroplets. The solvent diffuses out of the droplets into the continuous phase leading to the formation of solid microspheres. Experiments with poly (lactic-co-glycolic acid) (PLGA) as the matrix material produced microspheres of which 95% had a diameter between 1 and 2μm, a smaller size and a narrower size distribution than those reported elsewhere using glass or ceramic membranes. Such microspheres will be useful for the intravascular application and pharmaceutical drug delivery with a slow release of the drug at narrowly defined rates. Drug desorption and biodegradation rates induce controllable drug release from functionalized biodegradable microspheres. Those rates are directly proportional to microsphere size. One problem in conventional methods is how to achieve a desired average size and a narrow size distribution of the microspheres. Using a perforated silicon membrane, the size of the microdroplets mainly depends on the pore size and the speed of the continuous phase. By controlling these two parameters, it will be possible to fabricate monodisperse microspheres. The MEMS based approach to microsphere fabrication provided in this paper allows a better control over microsphere dimensions and therefore better control over drug delivery than those reported elsewhere.

Copyright © 2008 by American Society of Mechanical Engineers
This article is only available in the PDF format.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In