0
2008 Design of Medical Devices Conference Abstracts

Temporal Resolution Phantom: A Device and Method for Measurement of a CT Scanner’s Temporal Resolution OPEN ACCESS

[+] Author and Article Information
Alexander H. Slocum, Stephen E. Jones, Rajiv Gupta

 MIT, MGH, Cleveland Clinic

J. Med. Devices 2(2), 027542 (Jun 25, 2008) (1 page) doi:10.1115/1.2932429 History: Published June 25, 2008

Abstract

A calibration phantom that can be used to measure the temporal resolution of a CT scanner was designed utilizing a deterministic design process. The system was first defined in terms of a set of functional requirements based on parameters of the imaging modality. It was necessary to generate multiple time-varying signals visible to the scanner, each with a pre-determined temporal frequency. Roll-off in the scanner’s ability to resolve the modulation of certain signals would be used to determine the scanner’s temporal resolution. Based on size limitations imposed by the scanning environment, the phantom utilizes multiple planetary gear assemblies, driven by a common shaft, to achieve a wide range of rotational velocities. Results obtained with an alpha prototype agreed with the theory. It was determined that further development of the phantom was necessary to increase the sensitivity of the measurement. The latest prototype phantom has been used to measure the temporal resolution of two different scanners and it was shown that temporal resolution of each is different from the gantry rotation time.

Copyright © 2008 by American Society of Mechanical Engineers
This article is only available in the PDF format.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In