2010 Design of Medical Devices Conference Abstracts

Statistical Shape Modeling of Femurs Using Morphing and Principal Component Analysis PUBLIC ACCESS

[+] Author and Article Information
Najah Hraiech, Christelle Boichon, Michel Rochette, Thierry Marchal, Marc Horner


J. Med. Devices 4(2), 027534 (Aug 11, 2010) (1 page) doi:10.1115/1.3443744 History: Published August 11, 2010


In this paper, we describe a method for automatically building a statistical shape model by applying a morphing method and a principal component analysis (PCA) to a large database of femurs. One of the major challenges in building a shape model from a training data set of 3D objects is the determination of the correspondence between different shapes. In our work, we solve this problem by using a morphing method. The morphing method consists of deforming the same template mesh over a large database of femur geometries, which results in isotopological meshes and one to one correspondences; i.e., the resulting meshes have the same number of nodes, the same number of elements, and the same connectivity in all morphed meshes. By applying the morphing-based registration followed by PCA to a large database of femurs, we demonstrate that the method can be used to derive a low dimensional representation of the main variabilities of the femur geometry.

Copyright © 2010 by American Society of Mechanical Engineers
This article is only available in the PDF format.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In