Research Papers

Self-Expanding Stent and Delivery System for Aortic Valve Replacement

[+] Author and Article Information
Dumitru Mazilu

e-mail: mazilud@nhlbi.nih.gov

Ming Li

e-mail: lim2@nhlbi.nih.gov
Cardiothoracic Surgery Research Program,
National Institutes of Health/National Heart,
Lung, and Blood Institute,
10 Center Drive, MSC 1550,
Bldg 10, Room B1D47,
Bethesda, MD 20892

Ozgur Kocaturk

Cardiovascular Intervention Program,
National Institutes of Health/National Heart,
Lung, and Blood Institute,
10 Center Drive, MSC 1550,
Bldg 10, Room B1D47,
Bethesda, MD 20892
e-mail: kocaturko@nhlbi.nih.gov

Keith A. Horvath

Cardiothoracic Surgery Research Program
National Institutes of Health/National Heart,
Lung, and Blood Institute,
10 Center Drive, MSC 1550,
Bldg 10, Room B1D47,
Bethesda, MD 20892
e-mail: horvathka@nhlbi.nih.gov

1Corresponding author.

Manuscript received April 4, 2012; final manuscript received September 14, 2012; published online November 1, 2012. Assoc. Editor: James Moore.

J. Med. Devices 6(4), 041006 (Nov 01, 2012) (9 pages) doi:10.1115/1.4007750 History: Received April 04, 2012; Revised September 14, 2012

Currently, aortic valve replacement procedures require a sternotomy and use of cardiopulmonary bypass (CPB) to arrest the heart and provide a bloodless field in which to operate. A less invasive alternative to open heart surgery is transapical or transcatheter aortic valve replacement (TAVR), already emerging as a feasible treatment for patients with high surgical risk. The bioprosthetic valves are delivered via catheters using transarterial or transapical approaches and are implanted within diseased aortic valves. This paper reports the development of a new self-expanding stent for minimally invasive aortic valve replacement and its delivery device for the transapical approach under real-time magnetic resonance imaging (MRI) guidance. Made of nitinol, the new stent is designed to implant and embed a commercially available bioprosthetic aortic valve in aortic root. An MRI passive marker was affixed onto the stent and an MRI active marker to the delivery device. These capabilities were tested in ex vivo and in vivo experiments. Radial resistive force, chronic outward force, and the integrity of bioprosthesis on stent were measured through custom design dedicated test equipment. In vivo experimental evaluation was done using a porcine large animal model. Both ex vivo and in vivo experiment results indicate that the self-expanding stent provides adequate reinforcement of the bioprosthetic aortic valve and it is easier to implant the valve in the correct position. The orientation and positioning of the implanted valve is more precise and predictable with the help of the passive marker on stent and the active marker on delivery device. The new self-expanding nitinol stent was designed to exert a constant radial force and, therefore, a better fixation of the prosthesis in the aorta, which would result in better preservation of long-term heart function. The passive marker affixed on the stent and active marker embedded in the delivery devices helps to achieve precise orientation and positioning of the stent under MRI guidance. The design allows the stent to be retracted in the delivery device with a snaring catheter if necessary. Histopathology reports reveal that the stent is biocompatible and fully functional. All the stented bioprosthesis appeared to be properly seated in the aortic root.

© 2012 by ASME
Topics: Valves , stents , Prostheses
Your Session has timed out. Please sign back in to continue.


Leon, M. B., Smith, C. R., Mack, M., Miller, D. C., Moses, J. W., Svensson, L. G., Tuzcu, E. M., Webb, J. G., Fontana, G. P., Makkar, R. R., Brown, D. L., Block, P. C., Guyton, R. A., Pichard, A. D., Bavaria, J. E., Herrmann, H. C., Douglas, P. S., Petersen, J. L., Akin, J. J., Anderson, W. N., Wang, D., and Pocock, S., 2010, “Transcatheter Aortic-Valve Implantation for Aortic Stenosis in Patients Who Cannot Undergo Surgery,” N. Engl. J. Med., 363(17), pp. 1597–1607. [CrossRef] [PubMed]
Walther, T., Möllmann, H., Blumenstein, J., and Kempfert, J., 2011, “Transcatheter Aortic Valve Implantation for Severe Aortic Stenosis—Overcoming the Challenges,” Interv. Cardiol., 6(2), pp. 165–169, available at http://www.touchbriefings.com/ebooks/A1tts5/Intcardio62/resources/71.htm
Cribier, A., 2012, “Development of Transcatheter Aortic Valve Implantation (TAVI): A 20-Year Odyssey,” Arch. Cardiovasc. Dis., 105(3), pp. 146–152. [CrossRef] [PubMed]
Cribier, A., Eltchaninoff, H., Bash, A., Borenstein, N., Tron, C., Bauer, F., Derumeaux, G., Anselme, F., Laborde, F., and Leon, M. B., 2002, “Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis. First Human Case Description,” Circulation, 106, pp. 3006–3008. [CrossRef] [PubMed]
Walther, T., Simon, P., Dewey, T., Wimmer-Greinecker, G., Falk, V., Kasimir, M. T., Doss, M., Borger, M. A., Schuler, G., Glogar, D., Fehske, W., Wolner, E., Mohr, F. W., and Mack, M., 2007, “Transapical Minimally Invasive Aortic Valve Implantation: Multicenter Experience,” Circulation, 116(11_suppl), pp. I-240–245. [CrossRef]
Chiam, P. T. L., and Ruiz, C. E., 2008, “Percutaneous Transcatheter Aortic Valve Implantation: Assessing Results, Judging Outcomes, and Planning Trials: The Interventionalist Perspective,” JACC: Cardiovasc. Interv., 1(4), pp. 341–350. [CrossRef] [PubMed]
Lichtenstein, S. V., Cheung, A., Ye, J., Thompson, C. R., Carere, R. G., Pasupati, S., and Webb, J. G., 2006, “Transapical Transcatheter Aortic Valve Implantation in Humans Initial Clinical Experience,” Circulation, 114, pp. 591–596. [CrossRef] [PubMed]
Thomas, M., Schymik, G., Walther, T., Himbert, D., Lefèvre, T., Treede, H., Eggebrecht, H., Rubino, P., Michev, I., Lange, R., Anderson, W. N., and Wendler, O., 2010, “Thirty-Day Results of the SAPIEN Aortic Bioprosthesis European Outcome (SOURCE) Registry,” Circulation, 122(1), pp. 62–69. [CrossRef] [PubMed]
Grube, E., Schuler, G., Buellesfeld, L., Gerckens, U., Linke, A., Wenaweser, P., Sauren, B., Mohr, F.-W., Walther, T., Zickmann, B., Iversen, S., Felderhoff, T., Cartier, R., and Bonan, R., 2007, “Percutaneous Aortic Valve Replacement for Severe Aortic Stenosis in High-Risk Patients Using the Second- and Current Third-Generation Self-Expanding CoreValve Prosthesis: Device Success and 30-Day Clinical Outcome,” J. Am. Coll. Cardiol., 50(1), pp. 69–76. [CrossRef] [PubMed]
Lamarche, Y., Cartier, R., Denault, A. Y., Basmadjian, A., Berry, C., Laborde, J.-C., and Bonan, R., 2007, “Implantation of the CoreValve Percutaneous Aortic Valve,” Ann. Thorac. Surg., 83(1), pp. 284–287. [CrossRef] [PubMed]
Grube, E., Laborde, J. C., Gerckens, U., Felderhoff, T., Sauren, B., Buellesfeld, L., Mueller, R., Menichelli, M., Schmidt, T., Zickmann, B., Iversen, S., and Stone, G. W., 2006, “Percutaneous Implantation of the CoreValve Self-Expanding Valve Prosthesis in High-Risk Patients With Aortic Valve Disease: The Siegburg First-in-Man Study,” Circulation, 114, pp. 1616–1624. [CrossRef] [PubMed]
Petronio, A. S., De Carlo, M., Bedogni, F., Marzocchi, A., Klugmann, S., Maisano, F., Ramondo, A., Ussia, G. P., Ettori, F., Poli, A., Brambilla, N., Saia, F., De Marco, F., and Colombo, A., 2011, “Safety and Efficacy of the Subclavian Approach for Transcatheter Aortic Valve Implantation With the CoreValve Revalving System/Clinical Perspective,” Circulation: Cardiovascular Interventions, 3(4), pp. 359–366. [CrossRef]
Falk, V., Walther, T., Schwammenthal, E., Strauch, J., Aicher, D., Wahlers, T., Schäfers, J., Linke, A., and Mohr, F. W., 2011, “Transapical Aortic Valve Implantation With a Self-Expanding Anatomically Oriented Valve,” Eur. Heart J., 32(7), pp. 878–887. [CrossRef] [PubMed]
Ferrari, M., Figulla, H. R., Schlosser, M., Tenner, I., Frerichs, I., Damm, C., Guyenot, V., Werner, G. S., and Hellige, G., 2004, “Transarterial Aortic Valve Replacement With a Self Expanding Stent in Pigs,” Heart, 90, pp. 1326–1331. [CrossRef] [PubMed]
Kempfert, J., Holzhey, D., Rastan, A., Schoenburg, M., Treede, H., Thielmann, M., van Linden, A., Njezic, B., Blumenstein, J., Mohr, F. W., and Wather., T., 2011, “Transapical Aortic Valve Implantation Using the Symetis Accurate™ Device: Initial Clinical Experience,” 25th Annual Meeting of the European Association for Cardio-Thoracic Surgery (EACTS), Lisbon, Portugal, October 1–5.
Boudjemline, Y., and Bonhoeffer, P., 2002, “Steps Toward Percutaneous Aortic Valve Replacement,” Circulation, 105, pp. 775–778. [CrossRef] [PubMed]
McVeigh, R. E., Guttman, A. M., Lederman, J. R., Li, M., Kocaturk, O., Hunt, T., Kozlov, S., and Horvath, A. K., 2006, “Real-Time Interactive MRI-Guided Cardiac Surgery: Aortic Valve Replacement Using a Direct Apical Approach,” Magn. Reson. Med., 56(5), pp. 958–964. [CrossRef] [PubMed]
Cribier, A., Eltchaninoff, H., Tron, C., Bauer, F., Agatiello, C., Nercolini, D., Tapiero, S., Litzler, P.-Y., Bessou, J.-P., and Babaliaros, V., 2006, “Treatment of Calcific Aortic Stenosis With the Percutaneous Heart Valve: Mid-Term Follow-Up From the Initial Feasibility Studies: The French Experience,” J. Am. Coll. Cardiol., 47(6), pp. 1214–1223. [CrossRef] [PubMed]
Dewey, T. M., Walther, T., Doss, M., Brown, D., Ryan, W. H., Svensson, L., Mihaljevic, T., Hambrecht, R., Schuler, G., Wimmer-Greinecker, G., Mohr, F. W., and Mack, M. J., 2006, “Transapical Aortic Valve Implantation: An Animal Feasibility Study,” Ann. Thorac. Surg., 82(1), pp. 110–116. [CrossRef] [PubMed]
Horvath, K. A., Guttman, M., Li, M., Lederman, R. J., Mazilu, D., Kocaturk, O., Karmarkar, P. V., Hunt, T., Kozlov, S., and McVeigh, E. R., 2007, “Beating Heart Aortic Valve Replacement Using Real-Time MRI Guidance,” Innovations, 2(2), pp. 51–55. [CrossRef] [PubMed]
Huber, C. H., Cohn, L. H., and von Segesser, L. K., 2005, “Direct-Access Valve Replacement a Novel Approach for Off-Pump Valve Implantation Using Valved Stents,” J. Am. Coll. Cardiol., 46(2), pp. 366–370. [CrossRef] [PubMed]
Webb, J., and Cribier, A., 2011, “Percutaneous Transarterial Aortic Valve Implantation: What Do We Know?,” Eur. Heart J., 32(2), pp. 140–147. [CrossRef] [PubMed]
Webb, J. G., Pasupati, S., Humphries, K., Thompson, C., Altwegg, L., Moss, R., Sinhal, A., Carere, R. G., Munt, B., Ricci, D., Ye, J., Cheung, A., and Lichtenstein, S. V., 2007, “Percutaneous Transarterial Aortic Valve Replacement in Selected High-Risk Patients With Aortic Stenosis,” Circulation, 116(7), pp. 755–763. [CrossRef] [PubMed]
Walther, T., Falk, V., Borger, M. A., Dewey, T., Wimmer-Greinecker, G., Schuler, G., Mack, M., and Mohr, F. W., 2007, “Minimally Invasive Transapical Beating Heart Aortic Valve Implantation—Proof of Concept,” Eur. J. Cardiothorac. Surg., 31(1), pp. 9–15. [CrossRef] [PubMed]
Duerig, T. W., Tolomeo, D. E., and Wholey, M., 2000, “An Overview of Superelastic Stent Design,” Min. Invas. Ther. Allied Technol., 9(3/4), pp. 235–246. [CrossRef]
Stoeckel, D., Pelton, A., and Duerig, T., 2004, “Self-Expanding Nitinol Stents: Material and Design Considerations,” Eur. Radiol., 14(2), pp. 292–301. [CrossRef] [PubMed]
David, A., and Armitage, T. L. P. D. M. G., 2003, “Biocompatibility and Hemocompatibility of Surface-Modified NiTi Alloys,” J. Biomed. Mater. Res. A, 66A(1), pp. 129–137. [CrossRef]
Vojtech, D., Joska, L., and Leitner, J., 2008, “Influence of a Controlled Oxidation at Moderate Temperatures on the Surface Chemistry of Nitinol Wire,” Appl. Surf. Sci., 254(18), pp. 5664–5669. [CrossRef]
Wever, D. J., Veldhuizen, A. G., Sanders, M. M., Schakenraad, J. M., and van Horn, J. R., 1997, “Cytotoxic, Allergic and Genotoxic Activity of a Nickel-Titanium Alloy,” Biomaterials, 18(16), pp. 1115–1120. [CrossRef] [PubMed]
Yeung, K. W. K., Poon, R. W. Y., Liu, X. Y., Ho, J. P. Y., Chung, C. Y., Chu, P. K., Lu, W. W., Chan, D., and Cheung, K. M. C., 2005, “Corrosion Resistance, Surface Mechanical Properties, and Cytocompatibility of Plasma Immersion Ion Implantation-Treated Nickel-Titanium Shape Memory Alloys,” J. Biomed. Mater. Res. A, 75A(2), pp. 256–267. [CrossRef]
Horvath, K. A., Mazilu, D., Guttman, M., Zetts, A., Hunt, T., and Li, M., 2010, “Midterm Results of Transapical Aortic Valve Replacement via Real-Time Magnetic Resonance Imaging Guidance,” J. Thorac. Cardiovasc. Surg., 139(2), pp. 424–430. [CrossRef] [PubMed]
Horvath, A. K., Li, M., Mazilu, D., Guttman, A. M., and McVeigh, E., R., 2007, “Real-Time Magnetic Resonance Imaging Guidance for Cardiovascular Procedures,” Semin. Thor. Cardiovasc. Surg., 19(4), pp. 330–335. [CrossRef]
Horvath, A. K., Mazilu, D., Guttman, A. M., and Li, M., 2009, “Beating Heart Aortic Valve Replacement Under Real Time MRI Guidance,” J. Surg. Res., 151(2), pp. 225–226. [CrossRef]
2010, “Guidance for Industry and FDA Staff—Non-Clinical Engineering Tests and Recommended Labeling for Intravascular Stents and Associated Delivery Systems,” Federal Register. U.S. Food and Drug Administration, Silver Spring, MD, available at http://www.fda.gov/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm071863.htm
2005, “Cardiovascular Implants—Cardiac Valve Prostheses,” ISO 5840:2005, Federal Register. U.S. Food and Drug Administration, Silver Spring, MD, available at http://www.fda.gov/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm193096.htm
2010, “Draft Guidance for Industry and FDA Staff—Heart Valves—Investigational Device Exemption (IDE) and Premarket Approval (PMA) Applications,” ISO (International Organization for Standardization), Geneva, Switzerland, available at http://www.iso.org/iso/catalogue_detail.htm?csnumber=34164


Grahic Jump Location
Fig. 1

(a) Self- expanding stent; (b) bioprosthetic valve affixed in self-expanding stent

Grahic Jump Location
Fig. 2

Unfolded geometry with technical details of the stent

Grahic Jump Location
Fig. 3

The bioprosthesis delivery systems with loop coil antenna

Grahic Jump Location
Fig. 4

Device for radial force measurement

Grahic Jump Location
Fig. 5

(a) Chronic outward force (curve 2) and radial resistive force (curve 1) for stent alone; (b) resistive force (curve 3) and chronic outward force (curve 4) for stent and Toronto SPV, St. Jude valve mounted together

Grahic Jump Location
Fig. 6

A 25 mm modified Freestyle, Medtronic valve is presented mounted in a 26 mm stent before crimping and after crimping at 10 mm diameter

Grahic Jump Location
Fig. 7

Image artifacts of the stainless steel marker on the stent under MRI. (a) Transversal section; (b) long axis section.

Grahic Jump Location
Fig. 8

Self-expanding stented prosthesis deployment. (a) Stented prosthesis in delivery device, (b) stented prosthesis partially deployed, (c) stented prosthesis fully deployed.

Grahic Jump Location
Fig. 9

Radiographs of the heart taken from anterior (a) and lateral (b)

Grahic Jump Location
Fig. 10

The histopathology results at the proximal most end of the device. (a) Proximal section of the prosthetic valve; (b) high power view of the inferior edge of the device; (c) higher magnification of a boxed area in (a); (d) higher magnification of the superficial region of the skirt fabric bundles and surrounding chronic inflammation.

Grahic Jump Location
Fig. 11

The histopathology results at the most distal section of the prosthetic valve. (a) Distal section of the prosthetic valve; (b) mild neointimal tissue completely covering the stent struts; (c) is high power view of the stent strut from (b).




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In