0
Design Innovation Papers

Design Considerations for a Prosthetic Anterior Cruciate Ligament

[+] Author and Article Information
Jason S. Bach

e-mail: jsbach82@gatech.edu

Mohammed Cherkaoui

e-mail: mcherkaoui@me.gatech.edu
George W. Woodruff School of Mechanical Engineering,
Georgia Tech Lorraine,
2 Rue Marconi,
57070 Metz, France

Laurent Corté

e-mail: laurent.corte@mines-paristech.fr

Sabine Cantournet

e-mail: sabine.cantournet@mines-paristech.fr
Centre des Matériaux,
Mines Paris, Paristech,
CNRS UMR 7633,
BP 87, F-91003 Evry Cedex, France

David N. Ku

George W. Woodruff School of Mechanical Engineering,
Georgia Institute of Technology,
Atlanta, GA, 30332
e-mail: david.ku@me.gatech.edu

Manuscript received February 26, 2012; final manuscript received June 5, 2012; published online November 21, 2012. Assoc. Editor: Hamid M. Lankarani.

J. Med. Devices 6(4), 045004 (Nov 21, 2012) (9 pages) doi:10.1115/1.4007945 History: Received February 26, 2012; Revised June 05, 2012

Anterior cruciate ligament (ACL) tearing is a common knee injury often requiring reconstruction with an autograft or an allograft. A prosthetic ligament replacement with off-the-shelf availability could potentially provide significant advantages over the current options for both patients and surgeons. Limitations of previous prosthetics include lack of biocompatibility and susceptibility to fatigue, creep, and failure of bony incorporation. This paper describes design considerations and possible improvements for the next generation prosthetic ACL. Design controls, as mandated by the FDA, are a systematic set of practices within the design and development process used to ensure that a new medical device meets the needs of the intended users. The specified requirements, called the design inputs, for a prosthetic ACL are discussed pertaining to material and structural properties, resistance to creep and fatigue, ability to support secure initial fixation, biocompatibility, and long-term osseointegration. Design innovations to satisfy the design inputs are discussed with regards to material selection, textile pattern, bone tunnel features, and short term fixation. A risk analysis is presented along with descriptions of proposed testing. Design control methodology and tissue engineering may be used to develop a next generation prosthetic ligament, solving multiple problems, simultaneously, on a holistic level, providing major improvements over earlier devices and current treatment options.

FIGURES IN THIS ARTICLE
<>
© 2012 by ASME
Your Session has timed out. Please sign back in to continue.

References

Dodds, J. A., and Arnoczky, S. P., 1994, “Anatomy of the Anterior Cruciate Ligament: A Blueprint for Repair and Reconstruction,” Arthroscopy: J. Relat. Surg., 10(2), pp. 132–139. [CrossRef]
Nordin, M., Lorenz, T., and Campello, M., 2001, Biomechanics of Tendons and Ligaments, Basic Biomechanics of the Musculoskeletal System, Lippincott Williams & Wilkins, Philadelphia, PA.
Laurencin, C. T., Ambrosio, A. M. A., Borden, M. D., and Cooper, J. A., 1999, “Tissue Engineering: Orthopedic Applications,” Annu. Rev. Biomed. Eng., 1, pp. 19–46. [CrossRef] [PubMed]
Duthon, V. B., Barea, C., Abrassart, S., Fasel, J. H., Fritschy, D., and Ménétrey, J., 2006, “Anatomy of the Anterior Cruciate Ligament,” Knee Surg. Sports Traumatol. Arthrosc., 14(3), pp. 204–213. [CrossRef] [PubMed]
Hirokawa, S., and Hasezaki, H., 2010, “Model Analysis to Investigate the Contribution of Ground Substance to Ligament Stiffening,” Med. Eng. Phys., 32(6), pp. 610–616. [CrossRef] [PubMed]
Weiss, J. A., Gardiner, J. C., Ellis, B. J., Lujan, T. J., and Phatak, N. S., 2005, “Three-Dimensional Finite Element Modeling of Ligaments: Technical Aspects,” Med. Eng. Phys., 27(10), pp. 845–861. [CrossRef] [PubMed]
Weiss, J. A., and Gardiner, J. C., 2001, “Computational Modeling of Ligament Mechanics,” Crit. Rev. Biomed. Eng., 29(3), pp. 303–371. [CrossRef] [PubMed]
Hirokawa, S., and Tsuruno, R., 2000, “Three-Dimensional Deformation and Stress Distribution in an Analytical/Computational Model of the Anterior Cruciate Ligament,” J. Biomech., 33(9), pp. 1069–1077. [CrossRef] [PubMed]
Miyasaka, K. C., Daniel, D. M., Stone, M. L., and Hirshman, P., 1991, “The Incidence of Knee Ligament Injuries in the General Population,” Am. J. Knee Surg., 4, pp. 3–8.
Chen, E. H., and Black, J., 1980, “Materials Design Analysis of the Prosthetic Anterior Cruciate Ligament,” J. Biomed. Mater. Res., 14(5), pp. 567–586. [CrossRef] [PubMed]
Madick, S., 2011, “Anterior Cruciate Ligament Reconstruction of the Knee,” AORN J., 93(2), pp. 210–225. [CrossRef] [PubMed]
Ericsson, Y. B., Dahlberg, L. E., and Roos, E. M., 2009, “Effects of Functional Exercise Training on Performance and Muscle Strength after Meniscectom,” Scand. J. Med. Sci. Sports, 19(2), pp. 156–165. [CrossRef] [PubMed]
Lyon, R. M., Akeson, W. H., Amiel, D., Kitabayashi, L. R., and Woo, S. L., 1991, “Ultrastructural Differences Between the Cells of the Medial Collateral and the Anterior Cruciate Ligaments,” Clin. Orthop. Relat. Res., 272, pp. 279–286. [CrossRef] [PubMed]
Freedman, K. B., D'amato, M. J., Nedeff, D. D., Kaz, A., and Bach, B. R., 2003, “Arthroscopic Anterior Cruciate Ligament Reconstruction: A Metaanalysis Comparing Patellar Tendon and Hamstring Tendon Autografts,” Am. J. Sports Med., 31(1), pp. 2–11. [PubMed]
Csintalan, R. P., Inacio, M. C. S., and Funahashi, T. T., 2008, “Incidence Rate of Anterior Cruciate Ligament Reconstructions,” Perm. J., 12(3), pp. 17–21. [PubMed]
Spindler, K. P., and Wright, R. W., 2008, “Anterior Cruciate Ligament Tear,” N. Engl. J. Med., 359(20), pp. 2135–2142. [CrossRef] [PubMed]
Gottlob, C. A., Baker, C. L. J., Pellissier, J. M., and Colvin, L., 1999, “Cost Effectiveness of Anterior Cruciate Ligament Reconstruction in Young Adults,” Clin. Orthop. Relat. Res., 367, pp. 272–282. [CrossRef] [PubMed]
Yunes, M., Richmond, J. C., Engels, E. A., and Pinczewski, L. A., 2001, “Patellar Versus Hamstring Tendons in Anterior Cruciate Ligament Reconstruction: A Meta-Analysis,” Arthroscopy: J. Relat. Surg., 17(3), pp. 248–257. [CrossRef]
Gavriilidis, I., Motsis, E. K., Pakos, E. E., Georgoulis, A. D., Mitsionis, G., and Xenakis, T. A., 2008, “Transtibial Versus Anteromedial Portal of the Femoral Tunnel in ACL Reconstruction: A Cadaveric Study,” The Knee, 15(5), pp. 364–367. [CrossRef] [PubMed]
Dargel, J., Schmidt-Weithoff, R., Fischer, S., Mader, K., Koebke, J., and Schneider, T., 2009, “Femoral Bone Tunnel Placement Using the Transtibial Tunnel or the Anteromedial Portal in ACL Reconstruction: A Radiographic Evaluation.,” Knee Surg. Sports Traumatol. Arthrosc., 17(3), pp. 220–227. [CrossRef] [PubMed]
Lee, M. C., Seong, S. C., Lee, S., Chang, C. B., Park, Y. K., Jo, H., and Kim, C. H., 2007, “Vertical Femoral Tunnel Placement Results in Rotational Knee Laxity After Anterior Cruciate Ligament Reconstruction,” Arthroscopy: J. Relat. Surg., 23(7), pp. 771–778. [CrossRef]
Loh, J. C., Fukuda, Y., Tsuda, E., Steadman, R. J., Fu, F. H., and Woo, S. L.-Y., 2003, “Knee Stability and Graft Function Following Anterior Cruciate Ligament Reconstruction: Comparison Between 11 O'Clock and 10 O'Clock Femoral Tunnel Placement,” Arthroscopy: J Relat. Surg., 19(3), pp. 297–304. [CrossRef]
Bedi, A., Musahl, V., Steuber, V., Kendoff, D., Choi, D., Allen, A. A., Pearle, A. D., and Altchek, D. W., 2011, “Transtibial Versus Anteromedial Portal Reaming in Anterior Cruciate Ligament Reconstruction: An Anatomic and Biomechanical Evaluation of Surgical Technique,” Arthroscopy: J. Relat. Surg., 27(3), pp. 380–390. [CrossRef]
Nishimoto, K., Kuroda, R., Mizuno, K., Hoshino, Y., Nagamune, K., Kubo, S., Yagi, M., Yamaguchi, M., Yoshiya, S., and Kurosaka, M., 2009, “Analysis of the Graft Bending Angle at the Femoral Tunnel Aperture in Anatomic Double Bundle Anterior Cruciate Ligament Reconstruction: A Comparison of the Transtibial and the Far Anteromedial Portal Technique,” Knee Surg. Sports Traumatol. Arthrosc., 17(3), pp. 270–276. [CrossRef] [PubMed]
Harner, C. H., Honkamp, N. J., and Ranawat, A. S., 2008, “Anteromedial Portal Technique for Creating the Anterior Cruciate Ligament Femoral Tunnel,” Arthroscopy: J. Relat. Surg., 24(1), pp. 113–115. [CrossRef]
Brown, C. H., Wilson, D. R., Hecker, A. T., and Ferragamo, M., 2004, “Graft-Bone Motion and Tensile Properties of Hamstring and Patellar Tendon Anterior Cruciate Ligament Femoral Graft Fixation Under Cyclic Loading,” Arthroscopy: J. Relat. Surg., 20(9), pp. 922–935. [CrossRef]
Ma, C. B., Francis, K., Towers, J., Irrgang, J., Fu, F. H., and Harner, C. H., 2004, “Hamstring Anterior Cruciate Ligament Reconstruction: A Comparison of Bioabsorbable Interference Screw and Endobutton-Post Fixation,” Arthroscopy: J. Relat. Surg., 20(2), pp. 122–128. [CrossRef]
Beasley, L. S., Weiland, D. E., Vidal, A. F., Chhabra, A., Herzka, A. S., Feng, M. T., and West, R. V., 2005, “Anterior Cruciate Ligament Reconstruction: A Literature Review of the Anatomy, Biomechanics, Surgical Considerations, and Clinical Outcomes,” Oper. Tech. Orthop., 15, pp. 5–19. [CrossRef]
Kamelger, F. S., Onder, U., Schmoelz, W., Tecklenburg, K., Arora, R., and Fink, C., 2009, “Suspensory Fixation of Grafts in Anterior Cruciate Ligament Reconstruction: A Biomechanical Comparison of 3 Implants,” Arthroscopy: J. Relat. Surg., 25(7), pp. 767–776. [CrossRef]
Robbe, R., and Johnson, D. L., 2002, “Graft Fixation Alternatives in Anterior Cruciate Ligament Reconstruction,” Univ. Pa Orthop. J., 15, pp. 21–28.
Kartus, J., Movin, T., and Karlsson, J., 2001, “Donor-Site Morbidity and Anterior Knee Problems After Anterior Cruciate Ligament Reconstruction Using Autografts,” Arthroscopy: J. Relat. Surg., 17(9), pp. 971–980. [CrossRef]
Cole, D. W., Ginn, T. A., Chen, G. J., Smith, B. P., Curl, W. W., Martin, D. F., and Poehling, G. G., 2005, “Cost Comparison of Anterior Cruciate Ligament Reconstruction: Autograft Versus Allograft,” Arthroscopy: J. Relat. Surg., 21(7), pp. 786–790. [CrossRef]
Prodromos, C., Joyce, B., and Shi, K., 2007, “A Meta-Analysis of Stability of Autografts Compared to Allografts After Anterior Cruciate Ligament Reconstruction,” Knee Surg. Sports Traumatol. Arthrosc., 15(7), pp. 851–856. [CrossRef] [PubMed]
Fu, F. H., Bennett, C. H., Ma, C. B., Menetrey, J., and Lattermann, C., 2000, “Current Trends in Anterior Cruciate Ligament Reconstruction. Part II. Operative Procedures and Clinical Correlations,” Am. J. Sports Med., 28(1), pp. 124–130. [PubMed]
Jackson, D. W., Grood, E. S., and Goldstein, J. D., 1993, “A Comparison of Patellar Tendon Autograft and Allograft Used for Anterior Cruciate Ligament Reconstruction in the Goat Model,” Am. J. Sports Med., 21(2), pp. 176–185. [CrossRef] [PubMed]
Crawford, C., Kainer, M., Jernigan, D., Banerjee, S., Friedman, C., Ahmed, F., and Archibald, L. K., 2005, “Investigation of Postoperative Allograft-Associated Infections in Patients Who Underwent Musculoskeletal Allograft Implantation,” Clin. Infect. Dis., 41(2), pp. 195–200. [CrossRef] [PubMed]
CDC, 2002, “Update: Allograft-Associated Bacterial Infections—United States,” MMWR Morb. Mortal. Wkly Rep., 51(10), pp. 207–210. [PubMed]
Kainer, M. A., Linden, J. V., Whaley, D. N., Holmes, H. T., Jarvis, W. R., Jernigan, D. B., and Archibald, L. K., 2004, “Clostridium Infections Associated With Musculoskeletal-Tissue Allografts,” N. Engl. J. Med., 350(25), pp. 2564–2571. [CrossRef] [PubMed]
Weiler, A., Windhagen, H. J., Raschke, M. J., Laumeyer, A., and Hoffmann, R. F., 1998, “Biodegradable Interference Screw Fixation Exhibits Pull-Out Force and Stiffness Similar to Titanium Screws,” Am. J. Sports Med., 26(1), pp. 119–126. [CrossRef] [PubMed]
Christel, P., 1994, “Prosthetic Replacement of the Anterior Cruciate Ligament: A Challenge,” Clin. Mater., 15(1), pp. 3–13. [CrossRef] [PubMed]
Moyen, B., and Lerat, J.-L., 1994, “Artificial Ligaments for Anterior Cruciate Ligament Replacement,” J. Bone Jt. Surg., Br., 76-B(2), pp. 173–175.
Lange, F., 1903, “Uber Die Sehnenplastik,” Verh. Dtsch. Orthop. Ges., 2, pp. 10–12.
Legnani, C., Ventura, A., Terzaghi, C., Borgo, E., and Albisetti, W., 2010, “Anterior Cruciate Ligament Reconstruction With Synthetic Grafts. A Review of the Literature,” Int. Orthop., 34(4), pp. 465–471. [CrossRef] [PubMed]
Mascarenhas, R., and Macdonald, P. B., 2008, “Anterior Cruciate Ligament Reconstruction: A Look at Prosthetics—Past, Present and Possible Future,” McGill J. Med., 11(1), pp. 29–37. [PubMed]
Pruitt, L. A., and Chakravartula, A. M., 2011, Mechanics of Biomaterials: Fundamental Principles for Implant Design, Cambridge Texts in Biomedical Engineering, Cambridge University Press, Cambridge, UK.
Jenkins, D. H. R., 1978, “The Repair of Cruciate Ligaments With Flexible Carbon Fibre: A Longer Term Study of the Induction of New Ligaments and of the Fate of the Implanted Carbon,” J. Bone Jt. Surg., Br., 60-B(4), pp. 520–522.
Mody, B. S., Howard, L., Harding, M. L., Parmar, H. V., and Learmonth, D. J., 1993, “The ABC Carbon and Polyester Prosthetic Ligament for ACL-Deficient Knees. Early Results in 31 Cases,” J. Bone Jt. Surg., Br. Vol., 75(5), pp. 818–821.
Richmond, J. C., Manseau, C. J., Patz, R., and Mcconville, O., 1992, “Anterior Cruciate Reconstruction Using a Dacron Ligament Prosthesis. A Long-Term Study,” Am. J. Sports Med., 20(1), pp. 24–28. [CrossRef] [PubMed]
Barrett, G. R., Line, L. L., Shelton, W. R., Manning, J. O., and Phelps, R., 1993, “The Dacron Ligament Prosthesis in Anterior Cruciate Ligament Reconstruction. A Four-Year Review,” Am. J. Sports Med., 21(3), pp. 367–373. [CrossRef] [PubMed]
López-Vázquez, E., Juan, J. A., Vila, E., and Debón, J., 1991, “Reconstruction of the Anterior Cruciate Ligament With a Dacron Prosthesis,” J. Bone Jt. Surg., Am., 73-A(9), pp. 1294–1300.
Rubenstein, D. L., Sarin, G., Subbio, C., and Miller, L. S., 1998, “Revision of Failed Gore-Tex Anterior Cruciate Ligament Reconstruction,” Oper. Tech. Sports Med., 6(2), pp. 97–101. [CrossRef]
Fujikawa, K., Iseki, F., and Seedhom, B. B., 1989, “Arthroscopy After Anterior Cruciate Reconstruction With the Leeds-Keio Ligament,” J. Bone Jt. Surg., Br., 71-B(4), pp. 566–570.
Rading, J., and Peterson, L., 1995, “Clinical Experience With the Leeds-Keio Artificial Ligament in Anterior Cruciate Ligament Reconstruction. A Prospective Two-Year Follow-up Study,” Am. J. Sports Med., 23(3), pp. 316–319. [CrossRef] [PubMed]
MacNicol, M. F., Penny, I. A., and Sheppard, L., 1991, “Early Results of the Leeds-Keio Anterior Cruciate Ligament Replacement,” J. Bone Jt. Surg., Br., 73(3), pp. 377–380.
McPherson, G. K., Mendenhall, H. V., Gibbons, D. F., Plenk, H., Rottmann, W., Sanford, J. B., Kennedy, J. C., and Roth, J. H., 1985, “Experimental Mechanical and Histologic Evaluation of the Kennedy Ligament Augmentation Device,” Clin. Orthop. Relat. Res., 196, pp. 186–195. [CrossRef] [PubMed]
Kdolsky, R. K., Gibbons, D., Kwansy, O., Schabus, R., and Plenk, H., 1997, “Braided Polypropylene Augmentation Device in Reconstructive Surgery of the Anterior Cruciate Ligament: Long-Term Clinical Performance of 594 Patients and Short-Term Arthroscopic Results, Failure Analysis by Scanning Electron Microscopy, and Synovial Histomorphology,” J. Orthop. Res., 15(1), pp. 1–10. [CrossRef] [PubMed]
Dericks, G., 1995, “Ligament Advanced Reinforcement System Anterior Cruciate Ligament Reconstruction,” Oper. Tech. Sports Med., 3(3), pp. 187–205. [CrossRef]
Machotka, Z., Scarborough, I., Duncan, W., Kumar, S., and Perraton, L., 2010, “Anterior Cruciate Ligament Repair With LARS (Ligament Advanced Reinforcement System): A Systematic Review,” Sports Med. Arthrosc. Rehabil. Ther. Technol., 2(29), pp. 1–10. [CrossRef] [PubMed]
Vunjak-Novakovic, G., Altman, G., Horan, R., and Kaplan, D. L., 2004, “Tissue Engineering of Ligaments,” Annu. Rev. Biomed. Eng., 6, pp. 131–156. [CrossRef] [PubMed]
Freeman, J. W., Woods, M. D., and Laurencin, C. T., 2007, “Tissue Engineering of the Anterior Cruciate Ligament Using a Braid-Twist Scaffold Design,” J. Biomech., 40(9), pp. 2029–2036. [CrossRef] [PubMed]
Altman, G. H., Horan, R. L., Lu, H. H., Moreau, J., Martin, I., Richmond, J. C., and Kaplan, D. L., 2002, “Silk Matrix for Tissue Engineered Anterior Cruciate Ligaments,” Biomaterials, 23(20), pp. 4131–4141. [CrossRef] [PubMed]
Ge, Z., Yang, F., Goh, J. C. H., Ramakrishna, S., and Lee, E. H., 2006, “Biomaterials and Scaffolds for Ligament Tissue Engineering,” J. Biomed. Mater. Res. Part A, 77A(3), pp. 639–652. [CrossRef]
Petrigliano, F. A., Mcallister, D. R., and Wu, B. M., 2006, “Tissue Engineering for Anterior Cruciate Ligament Reconstruction: A Review of Current Strategies,” Arthroscopy: J. Relat. Surg., 22(4), pp. 441–451. [CrossRef]
Guidoin, M. F., Marios, Y., Bejui, J., Poddevin, N., King, M. W., and Guidoin, R., 2000, “Analysis of Retrieved Polymer Fiber Based Replacements for the ACL,” Biomaterials, 21(23), pp. 2461–2474. [CrossRef] [PubMed]
Rokito, A. S., Shields, C. L., and Lee, M. R., 1995, “Anterior Cruciate Ligament Reconstruction With a Braided Ultrahigh Molecular Weight Polyethylene Prosthesis,” Oper. Tech. Sports Med., 3(3), pp. 222–227. [CrossRef]
Indelicato, P. A., Pascale, M. S., and Huegal, M. O., 1989, “Early Experience With the Gore-Tex Polytetrafluoroethylene Anterior Cruciate Ligament Prosthesis,” Am. J. Sports Med., 17(1), pp. 55–62. [CrossRef] [PubMed]
FDA, 2012, “Part 820 Quality System Regulations,” Code of Federal Regulations Title 21, U.S. Food and Drug Administration.
ISO, 2003, “13485:2003, Medical Devices—Quality Management Systems—Requirements for Regulatory Purposes.”
FDA, 1997, “Design Control Guidance for Medical Device Manufacturers,” U.S. Food and Drug Administration.
FDA, 1993, “Guidance Document for the Preparation of Investigational Device Exemptions and Premarket Approval Applications for Intra-Articular Prosthetic Knee Ligament Devices,” U.S. Food and Drug Administration.
Tuman, J. M., Diduch, D. R., Rubino, L. J., Baumfeld, J. A., Nguyen, H. S., and Hart, J. M., 2007, “Predictors for Hamstring Graft Diameter in Anterior Cruciate Ligament Reconstruction,” Am. J. Sports Med., 35(11), pp. 1945–1949. [CrossRef] [PubMed]
Amis, A. A., and Dawkins, G. P., 1991, “Functional Anatomy of the Anterior Cruciate Ligament. Fibre Bundle Actions Related to Ligament Replacements and Injuries,” J. Bone Jt. Surg., Br., 73(2), pp. 260–267.
Rowden, N. J., Sher, D., Rogers, G. J., and Schindhelm, K., 1997, “Anterior Cruciate Ligament Graft Fixation: Initial Comparison of Patellar Tendon and Semitendinosus Autografts in Young Fresh Cadavers,” Am. J. Sports Med., 25(4), pp. 472–478. [CrossRef] [PubMed]
Heming, J. F., Rand, J., and Steiner, M. E., 2007, “Anatomical Limitations of Transtibial Drilling in Anterior Cruciate Ligament Reconstruction,” Am. J. Sports Med., 35(10), pp. 1708–1715. [CrossRef] [PubMed]
Laurencin, C. T., and Freeman, J. W., 2005, “Ligament Tissue Engineering: An Evolutionary Materials Science Approach,” Biomaterials, 26(36), pp. 7530–7536. [CrossRef] [PubMed]
Iannace, S., Sabatini, G., Ambrosio, L., and Nicolais, L., 1995, “Mechanical Behaviour of Composite Artificial Tendons and Ligaments,” Biomaterials, 16(9), pp. 675–680. [CrossRef] [PubMed]
Freeman, J. W., and Kwansa, A. L., 2008, “Recent Advancements in Ligament Tissue Engineering: The Use of Various Techniques and Materials for ACL Repair,” Recent Pat. Biomed. Eng., 1, pp. 18–23. [CrossRef]
Noyes, F. R., Butler, D. L., Grood, E. S., Zernicke, R. F., and Hefzy, M. S., 1984, “Biomechanical Analysis of Human Ligament Grafts Used in Knee-Ligament Repairs and Reconstructions,” J. Bone Jt. Surg., Am., 66(3), pp. 344–352.
Woo, S. L.-Y., Hollis, J. M., Adams, D. J., Lyon, R. M., and Takai, S., 1991, “Tensile Properties of the Human Femur-Anterior Cruciate Ligament-Tibia Complex. The Effects of Specimen Age and Orientation,” Am. J. Sports Med., 19(3), pp. 217–225. [CrossRef] [PubMed]
Butler, D. L., Kay, M. D., and Stouffer, D. C., 1986, “Comparison of Material Properties in Fascicle-Bone Units From Human Patellar Tendon and Knee Ligaments,” J. Biomech., 19(6), pp. 425–432. [CrossRef] [PubMed]
Grood, E. S., and Noyes, F. R., 1976, “Cruciate Ligament Prosthesis: Strength, Creep, and Fatigue Properties,” J. Bone Jt. Surg., Am., 58(8), pp. 1083–1088.
Noyes, F. R., and Grood, E. S., 1976, “The Strength of the Anterior Cruciate Ligament in Humans and Rhesus Monkeys,” J. Bone Jt. Surg., Am., 58(8), pp. 1074–1082.
Kim, D. H., Wilson, D. R., Hecker, A. T., Jung, T. M., and Brown, C. H., 2003, “Twisting and Braiding Reduces the Tensile Strength and Stiffness of Human Hamstring Tendon Grafts Used for Anterior Cruciate Ligament Reconstruction,” Am. J. Sports Med., 31(6), pp. 861–867. [PubMed]
Gabriel, M. T., Wong, E. K., Woo, S. L. Y., Yagi, M., and Debski, R. E., 2004, “Distribution of in Situ Forces in the Anterior Cruciate Ligament in Response to Rotatory Loads,” J. Orthop. Res., 22(1), pp. 85–89. [CrossRef] [PubMed]
Zantop, T., Herbort, M., Raschke, M. J., Fu, F. H., and Petersen, W., 2007, “The Role of Anteromedial and Posterolateral Bundles of the Anterior Cruciate Ligament in Anterior Tibial Translation and Internal Rotation,” Am. J. Sports Med., 35(2), pp. 223–227. [CrossRef] [PubMed]
Tudor-Locke, C., Johnson, W. D., and Katzmarzyk, P. T., 2009, “Accelerometer-Determined Steps Per Day in Us Adults,” Med. Sci. Sports Exercise, 41(7), pp. 1384–1391. [CrossRef]
Weiler, A., Hoffmann, R. F., Stähelin, A. C., Bail, H. J., Siepe, C. J., and Südkamp, N. P., 1998, “Hamstring Tendon Fixation Using Interference Screws: A Biomechanical Study in Calf Tibial Bone,” Arthroscopy: J. Relat. Surg., 14(1), pp. 29–37. [CrossRef]
Shen, H. C., Chang, J. H., Lee, C. H., Shen, P. H., Yeh, T. T., Wu, C. C., and Kuo, C. L., 2010, “Biomechanical Comparison of Cross-Pin and Endobutton-Cl Femoral Fixation of a Flexor Tendon Graft for Anterior Cruciate Ligament Reconstruction—A Porcine Femur-Graft-Tibia Complex Study,” J. Surg. Res., 161(2), pp. 282–287. [CrossRef] [PubMed]
Selby, J. B., Johnson, D. L., Hester, P., and Caborn, D. N., 2001, “Effect of Screw Length on Bioabsorbable Interference Screw Fixaton in a Tibial Bone Tunnel,” Am. J. Sports Med., 29(5), pp. 614–619. [PubMed]
Fu, F. H., Bennett, C. H., Lattermann, C., and Ma, C. B., 1999, “Current Trends in Anterior Cruciate Ligament Reconstruction. Part 1: Biology and Biomechanics of Reconstruction,” Am. J. Sports Med., 27(6), pp. 821–830. [PubMed]
Hantes, M. E., Mastrokalos, D. S., Yu, J., and Paessler, H. H., 2004, “Effect of Early Motion on Tibial Tunnel Widening,” Arthroscopy: J. Relat. Surg., 20(6), pp. 572–580. [CrossRef]
Arnoczky, S. P., Torzilli, P. A., Warren, R. F., and Allen, A. A., 1988, “Biologic Fixation of Ligament Prostheses and Augmentations. An Evaluation of Bone Ingrowth in the Dog,” Am. J. Sports Med., 16(2), pp. 106–112. [CrossRef] [PubMed]
Paavolainen, P., Mäkisalo, S., Skutnabb, K., and Holmström, T., 1993, “Biologic Anchorage of Cruciate Ligament Prosthesis. Bone Ingrowth and Fixation of the Gore-Tex Ligament in Sheep,” Acta Orthop. Scand., 64(3), pp. 323–328. [CrossRef] [PubMed]
Dürselen, L., Claes, L., Ignatius, A., and Rübenacker, S., 1996, “Comparative Animal Study of Three Ligament Prostheses for the Replacement of the Anterior Cruciate and Medial Collateral Ligament,” Biomaterials, 17(10), pp. 977–982. [CrossRef] [PubMed]
Thomas, N. P., Turner, I. G., and Jones, C. B., 1987, “Prosthetic Anterior Cruciate Ligaments in the Rabbit. A Comparison of Four Types of Replacement,” J. Bone Jt. Surg., Br., 69-B(2), pp. 312–316.
Simske, S. J., Ayers, R. A., and Bateman, T. A., 1997, “Porous Materials for Bone Engineering,” Mater. Sci. Forum, 250, pp. 151–182. [CrossRef]
Rezwan, K., Chen, Q. Z., Blaker, J. J., and Boccaccini, A. R., 2006, “Biodegradable and Bioactive Porous Polymer/Inorganic Composite Scaffolds for Bone Tissue Engineering,” Biomaterials, 27(18), pp. 3413–3431. [CrossRef] [PubMed]
Porter, J. R., Ruckh, T. T., and Popat, K. C., 2009, “Bone Tissue Engineering: A Review in Bone Biomimetics and Drug Delivery Strategies,” Biotechnol. Prog., 25(6), pp. 1539–1560. [CrossRef] [PubMed]
Baxter, F. R., Bach, J. S., Detrez, F., Cantournet, S., Corté, L., Cherkaoui, M., and Ku, D. N., 2010, “Augmentation of Bone Tunnel Healing in Anterior Cruciate Ligament Grafts: Application of Calcium Phosphates and Other Materials,” J. Tissue Eng., 1, pp. 1–12. [CrossRef]
Cooper, J. A., Sahota, J. S., Gorum, W. J., Carter, J., Doty, S. B., and Laurencin, C. T., 2007, “Biomimetic Tissue-Engineered Anterior Cruciate Ligament Replacement,” Proc. Natl. Acad. Sci. U.S.A., 104(9), pp. 3049–3054. [CrossRef] [PubMed]
ISO, 2010–2012, “ISO 10993, Biological Evaluation of Medical Devices.”
Hamner, D. L., Brown, C. H., Steiner, M. E., Hecker, A. T., and Hayes, W. C., 1999, “Hamstring Tendon Grafts for Reconstruction of the Anterior Cruciate Ligament: Biomechanical Evaluation of the Use of Multiple Strands and Tensioning Techniques,” J. Bone Jt. Surg., Am., 81(4), pp. 549–557.
Yagi, M., Wong, E. K., Kanamori, A., Debski, R. E., Fu, F. H., and Woo, S. L.-Y., 2002, “Biomechanical Analysis of an Anatomic Anterior Cruciate Ligament Reconstruction,” Am. J. Sports Med., 30(5), pp. 660–666. [PubMed]
Caborn, D. N. M., Coen, M., Neef, R., Hamilton, D., Nyland, J., and Johnson, D. L., 1998, “Quadrupled Semitendinosus-Gracilis Autograft Fixation in the Femoral Tunnel: A Comparison Between a Metal and a Bioabsorbable Interference Screw,” Arthroscopy: J. Relat. Surg., 14(3), pp. 241–245. [CrossRef]
Shanbhag, A. S., Bailey, H. O., Hwang, D.-S., Cha, C. W., Eror, N. G., and Rubash, H. E., 2000, “Quantitative Analysis of Ultrahigh Molecular Weight Polyethylene (UHMWPE) Wear Debris Associated With Total Knee Replacements,” J. Biomed. Mater. Res., 53(1), pp. 100–110. [CrossRef] [PubMed]
Weimann, A., Rodieck, M., Zantop, T., Hassenpflug, J., and Peterson, W., 2005, “Primary Stability of Hamstring Graft Fixation With Biodegradable Suspension Versus Interference Screws,” Arthroscopy: J. Relat. Surg., 21(3), pp. 266–274. [CrossRef]
Gegauff, C., 1907, “Strength and Elasticity of Cotton Threads,” Bull. Soc. Ind. Mulhouse, 77, pp. 153–212.
White, J. L., Chen, C. C., and Spruiell, J. E., 1975, “Some Aspects of the Mechanics of Continuous Filament Twisted Yarns and the Deformation of Fibers,” Appl. Polym. Symp., 27, pp. 275–294.
Rao, Y., and Farris, R., 2000, “A Modeling and Experimental Study of the Influence of Twist on the Mechanical Properties of High-Performance Fiber Yarns,” J. Appl. Polym. Sci., 77, pp. 1938–1949. [CrossRef]
Hopper, R. H., and Grant, J. W., 1995, “Mechanics of a Hybrid Circular Braid With an Elastic Core,” Text. Res. J., 65(12), pp. 709–722. [CrossRef]
Guarino, V., Causa, F., and Ambrosio, L., 2007, “Bioactive Scaffolds for Bone and Ligament Tissue,” Expert Rev. Med. Devices, 4(3), pp. 405–418. [CrossRef] [PubMed]
Ku, D. N., 2009, “Biomedical Engineering Systems and Technologies Part 2,” New Soft Tissue Implants Using Organic Elastomers, Springer-Verlag, Heidelberg, Germany.
Kurtz, S. M., 2009, UHMWPE Biomaterials Handbook: Ultra High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices, Academic Press, London.
Cook, J. L., Luther, J. K., Beetem, J., Karnes, J., and Cook, C. R., 2010, “Clinical Comparison of a Novel Extracapsular Stabilization Procedure and Tibial Plateau Leveling Osteotomy for Treatment of Cranial Cruciate Ligament Deficiency in Dogs,” Vet. Surg., 39(3), pp. 315–323. [CrossRef] [PubMed]
ISO, 2007, “14971:2007, Medical Devices—Application of Risk Management to Medical Devices.”
Franceschini, F., and Galetto, M., 2001, “A New Approach for Evaluation of Risk Priorities of Failure Modes in FMEA,” Int. J. Prod. Res., 39(13), pp. 2991–3002. [CrossRef]
Pioletti, D. P., Rakotomanana, L. R., and Leyvraz, P.-F., 1999, “Strain Rate Effect on the Mechanical Behavior of the Anterior Cruciate Ligament-Bone Complex,” Med. Eng. Phys., 21(2), pp. 95–100. [CrossRef] [PubMed]
Shelburne, K. B., Pandy, M. G., Anderson, F. C., and Torry, M. R., 2004, “Pattern of Anterior Cruciate Ligament Force in Normal Walking,” J. Biomech., 37(6), pp. 797–805. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Transtibial (a) and anteromedial portal (b) drilled femoral tunnel orientations

Grahic Jump Location
Fig. 2

Design control process. Adapted from FDA guidance document [69].

Grahic Jump Location
Fig. 3

A fault tree diagram for a prosthetic ACL. Failure modes are traced back to root causes, which can be countered as a part of the design process.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In