Research Papers

Design and Control of an Magnetic Resonance Compatible Precision Pneumatic Active Cannula Robot

[+] Author and Article Information
David B. Comber

Graduate Research Assistant
e-mail: david.b.comber@vanderbilt.edu

Eric J. Barth

Associate Professor
e-mail: eric.j.barth@vanderbilt.edu

Robert J. Webster, III

Assistant Professor
e-mail: robert.webster@vanderbilt.edu
Department of Mechanical Engineering,
Vanderbilt University,
Nashville, TN 37235

Manuscript received December 21, 2012; final manuscript received May 28, 2013; published online December 6, 2013. Assoc. Editor: Carl A. Nelson.

J. Med. Devices 8(1), 011003 (Dec 06, 2013) (7 pages) Paper No: MED-12-1160; doi: 10.1115/1.4024832 History: Received December 21, 2012; Revised May 28, 2013

The versatile uses and excellent soft tissue distinction afforded by magnetic resonance imaging (MRI) has led to the development of many MR-compatible devices for MRI-guided interventions. This paper presents a fully pneumatic MR-compatible robotic platform designed for neurosurgical interventions. Actuated by nonmagnetic pneumatic piston-cylinders, the robotic platform manipulates a five degree-of-freedom active cannula designed for deep brain interventions. Long lines of tubing connect the cylinders to remotely located pressure sensors and valves, and MRI-compatible optical sensors mounted on the robot provide the robot joint positions. A robust, nonlinear, model-based controller precisely translates and rotates the robot joints, with mean steady-state errors of 0.032 mm and 0.447 deg, respectively. MRI-compatibility testing in a 3-Tesla closed-bore scanner has shown that the robot has no impact on the signal-to-noise ratio, and that geometric distortion remains within recommended calibration limits for the scanner. These results demonstrate that pneumatic actuation is a promising solution for neurosurgical interventions that either require or can benefit from submillimeter precision. Additionally, this paper provides a detailed solution to the control problems imposed by severe nonlinearities in the pneumatic system, which has not previously been discussed in the context of MR-compatible devices.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.


Tsekos, N., Khanicheh, A., Christoforou, E., and Mavroidis, C., 2007, “Magnetic Resonance-Compatible Robotic and Mechatronics Systems for Image-Guided Interventions and Rehabilitation: A Review Study,” Ann. Rev. Biomed. Eng., 9, pp. 351–387. [CrossRef]
Su, H., Cole, G. A., and Fischer, G. S., 2011, “High-Field MRI-Compatible Needle Placement Robots for Prostate Interventions: Pneumatic and Piezoelectric Approaches,” Advances in Robotics and Virtual Reality, T.Gulrez and A.Hassanien, eds., Springer-Verlag, Berlin, Chap. 1.
Woodrum, D. A., Mynderse, L. A., Gorny, K. R., Amrami, K. K., McNichols, R. J., and Callstrom, M. R., 2011, “3.0T MR-Guided Laser Ablation of a Prostate Cancer Recurrence in the Postsurgical Prostate Bed,” J. Vasc. Interv. Radiol., 22, pp. 929–934. [CrossRef] [PubMed]
Curry, D. J., Gowdy, A., McNichols, R. J., and Wilfong, A. A., 2012, “MR-Guided Stereotactic Ablation of Epileptogenic Foci in Children,” Epilepsy Behav., 24(4), pp. 408–414. [CrossRef] [PubMed]
Carpentier, A., McNichols, R. J., Stafford, R. J., Itcovitz, J., Guichard, J. P., Reizine, D., Delalog, S., Vicaut, E., Payen, D., Gowda, A., and George, B., 2008, “Real-Time Magnetic Resonance-Guided Laser Thermal Therapy for Focal Metastatic Brain Tumors,” Neurosurgery, 63(1), pp. 21–29. [CrossRef]
Masamune, K., Kobayashi, E., Masutani, Y., Suzuki, M., Dohi, T., Iseki, H., and Takakura, K., 1995, “Development of an MRI-Compatible Needle Insertion Manipulator for Stereotactic Neurosurgery,” J. Image Guid. Surg., 1, pp. 242–248. [CrossRef] [PubMed]
Pfleiderer, S. O. R., Reichenbach, J. R., Azhari, T., Marx, C., Malich, A., Schneider, A., Vagner, J., Fischer, H., and Kaiser, W. A., 2003, “A Manipulator System for 14-Gauge Large Core Breast Biopsies Inside a High-Field Whole Body MR Scanner,” J. Magn. Reson. Imaging, 17, pp. 493–498. [CrossRef] [PubMed]
Larson, B. T., Erdman, A. G., Tsekos, N. V., Yacoub, E., Tsekos, P. V., and Koutlas, I. G., 2004, “Design of an MRI-Compatible Robotic Stereotactic Device for Minimally Invasive Interventions in the Breast,” ASME J. Biomech. Eng., 126, pp. 458–465. [CrossRef]
Sutherland, G., Latour, I., Greer, A. D., Fielding, T., Feil, G., and Newhook, P., 2008, “An Image-Guided Magnetic Resonance-Compatible Surgical Robot,” Neurosurgery, 62(2), pp. 286–293. [CrossRef] [PubMed]
Pandya, S., Motkoski, J. W., Serrano-Almeida, C., Greer, A. D., Latour, I., and Sutherland, G. R., 2009, “Advancing Neurosurgery With Image-Guided Robotics,” J. Neurosurg., 111(6), pp. 1141–1149. [CrossRef] [PubMed]
Melzer, A., Gutmann, B., Remmele, T., Wolf, R., Lukoscheck, A., Bock, M., Bardenheuer, H., and Fischer, H., 2008, “INNOMOTION for Percutaneous Image-Guided Interventions: Principles and Evaluation of this MR- and CT-Compatible Robotic System,” IEEE Eng. Med. Biol. Mag., 27(3), pp. 66–73. [CrossRef] [PubMed]
Fischer, G., Iordachita, I., Csoma, C., Tokuda, J., DiMaio, S., Tempany, C., Hata, N., and Fichtinger, G., 2008, “MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement,” IEEE/ASME Trans. Mechatron., 13(3), pp. 295–305. [CrossRef]
Yang, B., Tan, U-X., McMillan, A., Gullapalli, R., and Desai, J. P., 2011, “Design and Implementation of a Pneumatically-Actuated Robot for Breast Biopsy Under Continuous MRI,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Shanghai, May 9–13, pp. 674–679. [CrossRef]
Zemiti, N., Bricault, I., Fouard, C., Sanchez, B., and Cinquin, P., 2008, “LPR: A CT and MR-Compatible Puncture Robot to Enhance Accuracy and Safety of Image-Guided Interventions,” IEEE/ASME Trans. Mechatron., 13(3), pp. 306–315. [CrossRef]
Muntener, M., Patriciu, A., Petrisor, D., Schär, M., Ursu, D., Song, D. Y., and Stoianovici, D., 2008, “Transperineal Prostate Intervention: Robot for Fully Automated MR Imaging—System Description and Proof of Principle in a Canine Model,” Radiology, 247(2), pp. 543–549. [CrossRef] [PubMed]
van den Bosch, M. R., Moman, M. R., van Vulpen, M., Battermann, J. J., Duiveman, E., van Schelven, L. J., de Leeuw, H., Lagendjik, J. J. W., and Moerland, M. A., 2010, “MRI-Guided Robotic System for Transperineal Prostate Interventions: Proof of Principle,” Phys. Med. Biol., 55, pp. 133–140. [CrossRef] [PubMed]
Macura, K. J., and Stoianovici, D., 2008, “Advancements in Magnetic Resonance-Guided Robotic Interventions in the Prostate,” Top Magn. Reson. Imaging, 19(6), pp. 297–304. [CrossRef] [PubMed]
Bone, G. M., and Ning, S., 2007, “Experimental Comparison of Position Tracking Control Algorithms for Pneumatic Cylinder Actuators,” IEEE/ASME Trans. Mechatron., 12(5), pp. 557–561. [CrossRef]
Chillari, S., Guccione, S., and Muscato, G., 2001, “An Experimental Comparison Between Several Pneumatic Position Control Methods,” Proceedings of the 40th IEEE Conference on Decision and Control (CDC), Orlando, FL, December 4–7, pp. 1168 –1173. [CrossRef]
Richer, E., and Hurmuzlu, Y., 2000, “A High Performance Pneumatic Force Actuator System: Part 1—Nonlinear Mathematical Model,” ASME J. Dyn. Syst., Meas. Control, 122(3), pp. 416–425. [CrossRef]
Zhu, Y., and Barth, E. J., 2010, “Accurate Sub-Millimeter Servo-Pneumatic Tracking Using Model Reference Adaptive Control (MRAC),” Int. J. Fluid Power, 11(2), pp. 49–57.
Comber, D. B., Cardona, D., Webster, R. J., III, and Barth, E. J., 2012, “Sliding Mode Control of an MRI-Compatible Pneumatically Actuated Robot,” Bath/ASME Symposium on Fluid Power & Motion Control, D. N.Johnston and A. R.Plummer, eds., Centre for Power Transmission & Motion Control, University of Bath, Bath, UK, pp. 283–293.
Su, H., Cardona, D. C., Shang, W., Camilo, A., Cole, G. A., Rucker, D. C., Webster, R. J., III, and Fischer, G. S., 2012, “A MRI-Guided Concentric Tube Continuum Robot With Piezoelectric Actuation: A Feasibility Study,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, May 14–18, pp. 1939–1945. [CrossRef]
Rucker, D. C., Jones, B. A., and Webster, R. J., III, 2010, “A Geometrically Exact Model for Externally Loaded Concentric Tube Continuum Robots,” IEEE Trans. Rob., 26(5), pp. 769–780. [CrossRef]
Dupont, P. E., Lock, J., Itkowitz, B., and Butler, E., 2010, “Design and Control of Concentric-Tube Robots,” IEEE Trans Rob., 26(2), pp. 209–225. [CrossRef]
Lhatoo, S. D., Solomon, J. K., McEvoy, A. W., Kitchen, N. D., Shorvon, S. D., and Sander, J. W., 2003, “A Prospective Study of the Requirement For and the Provision of Epilepsy Surgery in the United Kingdom,” Epilepsia, 44(5), pp. 673–676. [CrossRef] [PubMed]
Berkovic, S. F., McIntosh, A. M., Kalnins, R. M., Jackson, G. D., Fabinyi, G. C. A., Brazenor, G. A., Bladin, P. F., and Hopper, J. L., 1995, “Preoperative MRI Predicts Outcome of Temporal Lobectomy: An Actuarial Analysis,” J. Neurol., 45, pp. 1358–1363. [CrossRef]
Comber, D., and Barth, E. J., 2011, “Precision Position Tracking of MR-Compatible Pneumatic Piston-Cylinder Using Sliding Mode Control,” Proceedings of the Dynamic Systems & Control Conference and Bath/ASME Symposium on Fluid Power & Motion Control, Arlington, VA, October 31–November 2, ASME Paper No. DSCC2011-5960, pp. 45–51. [CrossRef]
Comber, D. B., Cardona, D., Webster, R. J., III, and Barth, E. J., 2012, “Precision Pneumatic Robot for MRI-Guided Neurosurgery,” ASME J. Med. Dev., 6(1), p. 017587.
Rucker, D. C., and Webster, R. J., III, 2011, “Computing Jacobians and Compliance Matrices for Externally Loaded Continuum Robots,” Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, May 9–13, pp. 945–950. [CrossRef]


Grahic Jump Location
Fig. 1

Pneumatic piston-cylinder with fail-safe rod lock

Grahic Jump Location
Fig. 2

Photograph of the robotic platform with cranium model. Inset shows the 5 DoFs corresponding to the labeled base joints.

Grahic Jump Location
Fig. 3

Photograph of the linear-to-rotary transmission R1 mounted to plate T2

Grahic Jump Location
Fig. 4

Dynamics of the robot translational mechanism

Grahic Jump Location
Fig. 6

First translation (T1), endpoint to endpoint positioning

Grahic Jump Location
Fig. 10

Second rotation (R2), point to point angular positioning

Grahic Jump Location
Fig. 9

First rotation (R1), point to point angular positioning

Grahic Jump Location
Fig. 8

Third translation (T3), endpoint to endpoint positioning

Grahic Jump Location
Fig. 7

Second translation (T2), endpoint to endpoint positioning

Grahic Jump Location
Fig. 5

First translation, position tracking of a square wave



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In