Research Papers

Integrated Device for in Vivo Fine Needle Aspiration Biopsy and Elastic Scattering Spectroscopy in Preoperative Thyroid Nodules

[+] Author and Article Information
John C. Briggs

Fraunhofer USA–CMI,
Brookline, MA 02446

Ousama A’amar, Irving Bigio

Department of Biomedical Engineering,
Boston University,
Boston, MA 02215

Jennifer E. Rosen

Department of Surgery,
Section of Surgical Oncology
and Surgical Endocrinology,
School of Medicine,
Boston University,
Boston, MA 02118

Stephanie L. Lee

Department of Medicine,
Section of Endocrinology,
Diabetes, and Nutrition,
School of Medicine,
Boston University,
Boston, MA 02118

Andre Sharon

Fraunhofer USA–CMI,
Brookline, MA 02446;
Department of Mechanical Engineering,
Boston University,
Boston, MA 02215

Alexis F. Sauer-Budge

Fraunhofer USA–CMI,
Brookline, MA 02446;
Department of Biomedical Engineering,
Boston University,
Boston, MA 02215

Manuscript received August 30, 2013; final manuscript received January 16, 2014; published online March 7, 2014. Assoc. Editor: Carl A. Nelson.

J. Med. Devices 8(2), 021003 (Mar 07, 2014) (6 pages) Paper No: MED-13-1201; doi: 10.1115/1.4026577 History: Received August 30, 2013; Revised January 16, 2014

Thyroid nodules are a frequent clinical finding and the most common endocrine malignancy is thyroid cancer. The standard of care in the management of a patient with a thyroid nodule is to perform a preoperative fine needle aspiration (FNA) biopsy of the suspect nodule under ultrasound imaging guidance. In a significant percentage of the cases, cytological assessment of the biopsy material yields indeterminate results, the consequence of which is diagnostic thyroidectomy. Unfortunately, 75–80% of diagnostic thyroidectomies following indeterminate cytology result in benign designation by post-surgery histopathology, indicating potentially unnecessary surgeries. Clearly, the potential exists for the improvement in patient care and the reduction of overall procedure costs if an improved preoperative diagnostic technique was developed. Elastic scattering spectroscopy (ESS) is an optical biopsy technique that is mediated by optical fiber probes and has been shown to be effective in differentiating benign from malignant thyroid tissue in ex vivo surgical tissue samples. The goal of the current research was to integrate the ESS fiber optic probes into a device that can also collect cells for cytological assessment and, thus, enable concurrent spectroscopic interrogation and biopsy of a suspect nodule with a single needle penetration. The primary challenges to designing the device included miniaturizing the standard ESS fiber optic probe to fit within an FNA needle and maintaining the needle’s aspiration functionality. We demonstrate the value of the fabricated prototype devices by assessing their preliminary performance in an on-going clinical study with >120 patients. The devices have proven to be clinically friendly, collecting both aspirated cells and optical data from the same location in thyroid nodules and with minimal disruption of clinical procedure. In the future, such integrated devices could be used to complement FNA-based cytological results and have the potential to both reduce the number of diagnostic thyroidectomies on benign nodules and improve the surgical approach for patients with thyroid malignancies, thereby, decreasing healthcare costs and improving patient outcomes.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.


Tunbridge, W. M., Evered, D. C., Hall, R., Appleton, D., Brewis, M., Clark, F., Evans, J. G., Young, E., Bird, T., and Smith, P. A., 1977, “The Spectrum of Thyroid Disease in a Community: The Whickham Survey,” Clin. Endocrinol. (Oxf.), 7(6), pp. 481–493. [CrossRef]
Vander, J. B., Gaston, E. A., and Dawber, T. R., 1968, “The Significance of Nontoxic Thyroid Nodules. Final Report of a 15-Year Study of the Incidence of Thyroid Malignancy,” Ann. Intern. Med., 69(3), pp. 537–540. [CrossRef]
American Thyroid Association Guidelines Taskforce on Thyroid Nodules Differentiated Thyroid Cancer, Cooper, D. S., Doherty, G. M., Haugen, B. R., Kloos, R. T., Lee, S. L., Mandel, S. J., Mazzaferri, E. L., Mciver, B., Pacini, F., Schlumberger, M., Sherman, S. I., Steward, D. L., and Tuttle, R. M., 2009, “Revised American Thyroid Association Management Guidelines for Patients With Thyroid Nodules and Differentiated Thyroid Cancer,” Thyroid, 19(11), pp. 1167–1214. [CrossRef]
Tan, G. H., and Gharib, H., 1997, “Thyroid Incidentalomas: Management Approaches to Nonpalpable Nodules Discovered Incidentally on Thyroid Imaging,” Ann. Intern. Med., 126(3), pp. 226–231. [CrossRef]
Hegedus, L., 2004, “Clinical Practice. The Thyroid Nodule,” New England J. Med., 351(17), pp. 1764–1771. [CrossRef]
Li, H., Robinson, K. A., Anton, B., Saldanha, I. J., and Ladenson, P. W., 2011, “Cost-Effectiveness of a Novel Molecular Test for Cytologically Indeterminate Thyroid Nodules,” J. Clin. Endocrinol. Metab., 96(11), pp. E1719–E1726. [CrossRef]
American Cancer Society, 2013, “Thyroid Cancer Survival by Type and Stage,” http://www.cancer.org/cancer/thyroidcancer/detailedguide/thyroid-cancer-survival-rates
Suh, H., A’amar, O., Rodriguez-Diaz, E., Lee, S., Bigio, I., and Rosen, J. E., 2011, “Elastic Light-Scattering Spectroscopy for Discrimination of Benign From Malignant Disease in Thyroid Nodules,” Ann. Surg. Oncol., 18(5), pp. 1300–1305. [CrossRef]
Ohori, N. P., and Schoedel, K. E., 2011, “Variability in the Atypia of Undetermined Significance/Follicular Lesion of Undetermined Significance Diagnosis in the Bethesda System for Reporting Thyroid Cytopathology: Sources and Recommendations,” Acta Cytol., 55(6), pp. 492–498. [CrossRef]
Baloch, Z. W., Livolsi, V. A., Asa, S. L., Rosai, J., Merino, M. J., Randolph, G., Vielh, P., Demay, R. M., Sidawy, M. K., and Frable, W. J., 2008, “Diagnostic Terminology and Morphologic Criteria for Cytologic Diagnosis of Thyroid Lesions: A Synopsis of the National Cancer Institute Thyroid Fine-Needle Aspiration State of the Science Conference,” Diagn. Cytopathol., 36(6), pp. 425–437. [CrossRef]
Sherman, S., and Phagin, J., 2005, “Guest Editorial: Why Thyroid Cancer?,” Thyroid, 15(4), pp. 303–304. [CrossRef]
Mournant, J. R., and Bigio, I. J., 2003, “Elastic Scattering Spectroscopy and Diffuse Reflectance,” Biomedical Photonics Handbook, T.Vo-Dinh, ed., CRC Press, Boca Raton, FL.
Drakaki, E., Vergou, T., Dessinioti, C., Stratigos, A. J., Salavastru, C., and Antoniou, C., 2013, “Spectroscopic Methods for the Photodiagnosis of Nonmelanoma Skin Cancer,” J. Biomed. Opt., 18(6), p. 061221. [CrossRef]
Bakker Schut, T. C., Witjes, M. J., Sterenborg, H. J., Speelman, O. C., Roodenburg, J. L., Marple, E. T., Bruining, H. A., and Puppels, G. J., 2000, “In Vivo Detection of Dysplastic Tissue by Raman Spectroscopy,” Anal. Chem., 72(24), pp. 6010–6018. [CrossRef]
Luo, S., Chen, C., Mao, H., and Jin, S., 2013, “Discrimination of Premalignant Lesions and Cancer Tissues From Normal Gastric Tissues Using Raman Spectroscopy,” J. Biomed. Opt., 18(6), p. 067004. [CrossRef]
De Veld, D. C., Skurichina, M., Witjes, M. J., Duin, R. P., Sterenborg, H. J., and Roodenburg, J. L., 2004, “Clinical Study for Classification of Benign, Dysplastic, and Malignant Oral Lesions Using Autofluorescence Spectroscopy,” J. Biomed. Opt., 9(5), pp. 940–950. [CrossRef]
Lin, W., Yuan, X., Yuen, P., Wei, W. I., Sham, J., Shi, P., and Qu, J., 2004, “Classification of In Vivo Autofluorescence Spectra Using Support Vector Machines,” J. Biomed. Opt., 9(1), pp. 180–186. [CrossRef]
Majumder, S. K., Ghosh, N., and Gupta, P. K., 2005, “Relevance Vector Machine for Optical Diagnosis of Cancer,” Lasers Surg. Med., 36(4), pp. 323–333. [CrossRef]
Majumder, S. K., Ghosh, N., and Gupta, P. K., 2005, “Support Vector Machine for Optical Diagnosis of Cancer,” J. Biomed. Opt., 10(2), p. 024034. [CrossRef]
Gonzalez, S., 2013, “Red-Flag Technologies in Gastric Neoplasia,” Gastrointest. Endosc. Clin. N. Am., 23(3), pp. 581–595. [CrossRef]
Chang, S. K., Mirabal, Y. N., Atkinson, E. N., Cox, D., Malpica, A., Follen, M., and Richards-Kortum, R., 2005, “Combined Reflectance and Fluorescence Spectroscopy for In Vivo Detection of Cervical Pre-Cancer,” J. Biomed. Opt., 10(2), p. 024031. [CrossRef]
Palmer, G. M., Zhu, C., Breslin, T. M., Xu, F., Gilchrist, K. W., and Ramanujam, N., 2003, “Comparison of Multiexcitation Fluorescence and Diffuse Reflectance Spectroscopy for the Diagnosis of Breast Cancer (March 2003),” IEEE Trans. Biomed. Eng., 50(11), pp. 1233–1242. [CrossRef]
Zhu, C., Palmer, G. M., Breslin, T. M., Xu, F., and Ramanujam, N., 2005, “Use of a Multiseparation Fiber Optic Probe for the Optical Diagnosis of Breast Cancer,” J. Biomed. Opt., 10(2), p. 024032. [CrossRef]
Lin, W. C., Sandberg, D. I., Bhatia, S., Johnson, M., Oh, S., and Ragheb, J., 2010, “Diffuse Reflectance Spectroscopy for In Vivo Pediatric Brain Tumor Detection,” J. Biomed. Opt., 15(6), p. 061709. [CrossRef]
Brown, J. Q., Wilke, L. G., Kennedy, S., Palmer, G. M., Geradts, J., and Ramanujam, N., 2007, “Intraoperative In Vivo Reflectance Spectroscopy for Discrimination of Normal, Benign, and Malignant Breast Tissues,” Breast Cancer Res. Treat., 106(1 Suppl.), pp. S209–S210. [CrossRef]
Freeberg, J. A., Benedet, J. L., Macaulay, C., West, L. A., and Follen, M., 2007, “The Performance of Fluorescence and Reflectance Spectroscopy for the In Vivo Diagnosis of Cervical Neoplasia; Point Probe Versus Multispectral Approaches,” Gynecol. Oncol., 107(Suppl. 1), pp. S248–255. [CrossRef]
Austwick, M. R., Clark, B., Mosse, C. A., Johnson, K., Chicken, D. W., Somasundaram, S. K., Calabro, K. W., Zhu, Y., Falzon, M., Kocjan, G., Fearn, T., Bown, S. G., Bigio, I. J., and Keshtgar, M. R., 2010, “Scanning Elastic Scattering Spectroscopy Detects Metastatic Breast Cancer in Sentinel Lymph Nodes,” J. Biomed. Opt., 15(4), p. 047001. [CrossRef]
Zhu, Y., Fearn, T., Mackenzie, G., Clark, B., Dunn, J. M., Bigio, I. J., Bown, S. G., and Lovat, L. B., 2009, “Elastic Scattering Spectroscopy for Detection of Cancer Risk in Barrett’s Esophagus: Experimental and Clinical Validation of Error Removal by Orthogonal Subtraction for Increasing Accuracy,” J. Biomed. Opt., 14(4), p. 044022. [CrossRef]
Somasundaram, S. K., Chicken, D. W., Austwick, M. R., Bown, S. G., and Keshtgar, M. R., 2007, “Optical Biopsy Scanner Utilising Elastic Scattering Spectroscopy for Rapid Intra-Operative Diagnosis of Sentinel Node Metastases in Breast Cancer,” Breast Cancer Res. Treat., 106(1 Suppl.), pp. S126–S127. [CrossRef]
Lovat, L. B., Johnson, K., Mackenzie, G. D., Clark, B. R., Novelli, M. R., Davies, S., O’Donovan, M., Selvasekar, C., Thorpe, S. M., Pickard, D., Fitzgerald, R., Fearn, T., Bigio, I., and Bown, S. G., 2006, “Elastic Scattering Spectroscopy Accurately Detects High Grade Dysplasia and Cancer in Barrett’s Oesophagus,” Gut, 55(8), pp. 1078–1083. [CrossRef]
Mackenzie, G. D., Johnson, K., Novelli, M. R., O’Donovan, M., Davies, S., Selvasekar, C., Thorpe, S., Bigio, I. J., Bown, S. G., and Lovat, L. B., 2005, “Optical Biopsy Using Elastic Scattering Spectroscopy Can Detect Dysplasia and Cancer in Barrett’s Oesophagus,” Gut, 54, pp. A15–A15.
A’amar, O. M., Ley, R. D., and Bigio, I. J., 2004, “Comparison Between Ultraviolet-Visible and Near-Infrared Elastic Scattering Spectroscopy of Chemically Induced Melanomas in an Animal Model,” J. Biomed. Opt., 9(6), pp. 1320–1326. [CrossRef]
Dhar, A., Johnson, K. S., Novelli, M. R., Bown, S. G., Bigio, I. J., Lovat, L. B., and Bloom, S. L., 2006, “Elastic Scattering Spectroscopy for the Diagnosis of Colonic Lesions: Initial Results of a Novel Optical Biopsy Technique,” Gastrointest. Endosc., 63(2), pp. 257–261. [CrossRef]
Lovat, L., and Bown, S., 2004, “Elastic Scattering Spectroscopy for Detection of Dysplasia in Barrett’s Esophagus,” Gastrointest. Endosc. Clin. N. Am., 14(3), pp. 507–517. [CrossRef]
Jerjes, W., Swinson, B., Johnson, K. S., Thomas, G. J., and Hopper, C., 2005, “Assessment of Bony Resection Margins in Oral Cancer Using Elastic Scattering Spectroscopy: A Study on Archival Material,” Arch. Oral Biol., 50(3), pp. 361–366. [CrossRef]
Kelley, C., Lakhani, S., Pickard, D., Ripley, P. M., Bigio, I. J., Bown, S. G., Saunders, C., Briggs, G., and Rose, I. G., 2000, “Diagnosis of Breast Cancer Using Elastic-Scattering Spectroscopy: Preliminary Clinical Results,” J. Biomed. Opt., 5(2), pp. 221–228. [CrossRef]
Inci, M. F., Ozkan, F., Yuksel, M., Salk, I., and Sahin, M., 2013, “The Effects of Sonographic and Demographic Features and Needle Size on Obtaining Adequate Cytological Material in Sonography-Guided Fine-Needle Aspiration Biopsy of Thyroid Nodules,” Endocrine, 43(2), pp. 424–429. [CrossRef]
Degirmenci, B., Haktanir, A., Albayrak, R., Acar, M., Sahin, D. A., Sahin, O., Yucel, A., and Caliskan, G., 2007, “Sonographically Guided Fine-Needle Biopsy of Thyroid Nodules: The Effects of Nodule Characteristics, Sampling Technique, and Needle Size on the Adequacy of Cytological Material,” Clin. Radiol., 62(8), pp. 798–803. [CrossRef]
Rodriguez-Diaz, E., Castanon, D. A., Singh, S. K., and Bigio, I. J., 2011, “Spectral Classifier Design With Ensemble Classifiers and Misclassification-Rejection: Application to Elastic-Scattering Spectroscopy for Detection of Colonic Neoplasia,” J. Biomed. Opt., 16(6), p. 067009. [CrossRef]
Rodriguez-Diaz, E., Bigio, I. J., and Singh, S. K., 2011, “Integrated Optical Tools for Minimally Invasive Diagnosis and Treatment at Gastrointestinal Endoscopy,” Robot. Comput. Integr. Manuf., 27(2), pp. 249–256. [CrossRef]
Rangaswamy, M., Narendra, K., Patel, S., Gururajprasad, C., and Manjunath, G., 2013, “Insight to Neoplastic Thyroid Lesions by Fine Needle Aspiration Cytology,” J. Cytol., 30(1), pp. 23–26. [CrossRef]
Sibbitt, R. R., Sibbitt, W. L., Jr., Nunez, S. E., Kettwich, L. G., Kettwich, S. C., and Bankhurst, A. D., 2006, “Control and Performance Characteristics of Eight Different Suction Biopsy Devices,” J. Vasc. Interv. Radiol., 17(10), pp. 1657–1669. [CrossRef]


Grahic Jump Location
Fig. 1

Prototype FNA probe alongside standard syringe used for FNA

Grahic Jump Location
Fig. 7

Example ESS Spectra from in vivo measurement of thyroid nodule

Grahic Jump Location
Fig. 6

FNA optical probe being used on a patient. The ultrasound probe (left hand) has a protective latex covering and guides the needle of the integrated optical probe to the target nodule for biopsy.

Grahic Jump Location
Fig. 5

Photograph of the device in the calibrator

Grahic Jump Location
Fig. 4

Photograph of the end of the fiber optic probe. Outer diameter is approximately 344 μm.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In