0
Research Papers

Patient-Specific Guides for Total Hip Arthroplasty: A Paired Acetabular and Femoral Implantation Approach

[+] Author and Article Information
Jacob Stegman

Department of Biomedical, Chemical, and
Environmental Engineering,
College of Engineering and Applied Science,
University of Cincinnati,
Engineering Research Center—601,
Cincinnati, OH 45221-0012
e-mail: stegmajo@mail.uc.edu

Chris Casstevens

Department of Orthopaedic Surgery,
University of Cincinnati,
231 Albert Sabin Way,
ML 0212,
Cincinnati, OH 45267-0212
e-mail: cassteec@ucmail.uc.edu

Todd Kelley

Department of Orthopaedic Surgery,
University of Cincinnati,
231 Albert Sabin Way,
ML 0212,
Cincinnati, OH 45267-0212
e-mail: kelleyto@ucmail.uc.edu

Vasile Nistor

Mem. ASME
Department of Biomedical, Chemical, and
Environmental Engineering,
College of Engineering and Applied Science,
University of Cincinnati,
Engineering Research Center—601,
Cincinnati, OH 45221-0012
e-mail: nistorve@ucmail.uc.edu

Manuscript received June 27, 2014; final manuscript received October 13, 2014; published online November 14, 2014. Assoc. Editor: Rita M. Patterson.

J. Med. Devices 9(1), 011006 (Mar 01, 2015) (7 pages) Paper No: MED-14-1198; doi: 10.1115/1.4028945 History: Received June 27, 2014; Revised October 13, 2014; Online November 14, 2014

While total hip arthroplasty (THA) is a common orthopedic procedure for treatment of hip arthritis, current techniques demonstrate poor implant alignment accuracy and precision, which is critical to the replacement's long-term survivorship. Patient-specific instruments to guide bone preparation and implantation could improve accuracy, thereby improving replacement survivorship. A single cadaver was CT (computer tomography) scanned to extract the 3D bone geometry, from which the operating surgeon planned a THA. Patient-specific guides were designed, 3D printed, and used in the cadaveric THA procedure. Postprocedural CT data were used to compare measured implant positioning versus the preprocedural template. Implanted component accuracy ranged from 1 deg–12 deg.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Kurtz, S. M., Ong, K., Lau, E., Mowat, F., and Halpern, M., 2007, “Projections of Primary and Revision Hip and Knee Arthroplasty in the United States From 2005 to 2030,” J. Bone Joint Surg. Am., 89(4), pp. 780–785. [CrossRef] [PubMed]
Ulrich, S. D., Seyler, T. M., Bennett, D., Delanois, R. E., Saleh, K. J., Thongtrangan, I., Kuskowski, M., Cheng, E. Y., Sharkey, P. F., Parvizi, J., Stiehl, J. B., and Mont, M. A., 2008, “Total Hip Arthroplasties: What are the Reasons for Revision?,” Int. Orthop., 32(5), pp. 597–604. [CrossRef] [PubMed]
Kennedy, J. G., Rogers, W. B., Soffe, K. E., Sullivan, R. J., Griffen, D. G., and Sheehan, L. J., 1998, “Effect of Acetabular Component Orientation on Recurrent Dislocation, Pelvic Osteolysis, Polyethylene Wear, and Component Migration,” J. Arthroplasty, 13(5), pp. 530–534. [CrossRef] [PubMed]
Patel, A. B., Wagle, R. R., Usrey, M. M., Thompson, M. T., Incavo, S. J., and Noble, P. C., 2010, “Guidelines for Implant Placement to Minimize Impingement During Activities of Daily Living After Total Hip Arthroplasty,” J. Arthroplasty, 25(8), pp. 1275–1281. [CrossRef] [PubMed]
Malik, A., Maheshwari, A., and Dorr, L. D., 2007, “Impingement With Total Hip Replacement,” J. Bone Joint Surg. Am., 89(8), pp. 1832–1842. [CrossRef] [PubMed]
Woolson, S. T., Hartford, J. M., and Sawyer, A., 1999, “Results of a Method of Leg-Length Equalization for Patients Undergoing Primary Total Hip Replacement,” J. Arthroplasty, 14(2), pp. 159–164. [CrossRef] [PubMed]
Isaac, G. H., Schmalzried, T. P., and Vail, T. P., 2009, “Component Mal- Position: The ‘Achilles' Heel’ of Bearing Surfaces in Hip Replacement,” Proc. Inst. Mech. Eng. Part J, 223(3), pp. 275–286. [CrossRef]
Bozic, K. J., Kurtz, S. M., Lau, E., Ong, K., Vail, T. P., and Berry, D. J., 2009, “The Epidemiology of Revision Total Hip Arthroplasty in the United States,” J. Bone Joint Surg. Am., 91(1), pp. 128–133. [CrossRef] [PubMed]
Iorio, R., Healy, W. L., and Richards, J. A., 1997, “Hospital Cost of Primary vs. Revision Total Hip Arthroplasty After Cost Containment,” J. Arthroplasty, 12(2), pp. 227. [CrossRef]
Liang, T. J., You, M. Z., Xing, P. F., Bin, S., Ke, Z. Z., and Jing, Y., 2010, “Uncemented Total Hip Arthroplasty in Patients Younger Than 50 Years: A 6- to 10-Year Follow-Up Study,” Orthopedics, 33(4), pp. 236–239. [CrossRef]
Lewinnek, G. E., Lewis, J., Tarr, R., Compere, C., and Zimmerman, J., 1978, “Dislocations After Total Hip-Replacement Arthroplasties,” J. Bone Joint Surg. Am., 60(2), pp. 217–220. [PubMed]
Dorr, L. D., Malik, A., Dastane, M., and Wan, Z., 2009, “Combined Anteversion Technique for Total Hip Arthroplasty,” Clin. Orthop. Relat. Res., 467(1), pp. 119–127. [CrossRef] [PubMed]
Bosker, B. H., Verheyen, C. C. P. M., Horstmann, W. G., and Tulp, N. J. A., 2007, “Poor Accuracy of Freehand Cup Positioning During Total Hip Arthroplasty,” Arch. Orthop. Trauma Surg., 127(5), pp. 375–379. [CrossRef] [PubMed]
Hassan, D. M., Johnston, G. H., Dust, W. N., Watson, G., and Dolovich, A. T., 1998, “Accuracy of Intraoperative Assessment of Acetabular Prosthesis Placement,” J. Arthroplasty, 13(1), pp. 80–84. [CrossRef] [PubMed]
Marx, A., von Knoch, M., Pförtner, J., Wiese, M., and Saxler, G., 2006, “Misinterpretation of Cup Anteversion in Total Hip Arthroplasty Using Planar Radiography,” Arch. Orthop. Trauma Surg., 126(7), pp. 487–492. [CrossRef] [PubMed]
Ghelman, B., Kepler, C. K., Lyman, S., and Della Valle, A. G., 2009, “CT Outperforms Radiography for Determination of Acetabular Cup Version After THA,” Clin. Orthop. Relat. Res., 467(9), pp. 2362–2370. [CrossRef] [PubMed]
Echeverri, S., Leyvraz, P.-F., Zambelli, P.-Y., and Jolles, B. M., 2006, “Reliable Acetabular Cup Orientation With a New Gravity-Assisted Guidance System,” J. Arthroplasty, 21(3), pp. 413–419. [CrossRef] [PubMed]
DiGioia, A. M., Jaramaz, B., Plakseychuk, A. Y., Moody, J. E., Nikou, C., LaBarca, R. S., Levison, T. J., and Picard, F., 2002, “Comparison of a Mechanical Acetabular Alignment Guide With Computer Placement of the Socket,” J. Arthroplasty, 17(3), pp. 359–364. [CrossRef] [PubMed]
DiGioia, A. M., Jaramaz, B., Blackwell, M., Simon, D. A., Morgan, F., Moody, J. E., Nikou, C., Colgan, B. D., Aston, C. A., Labarca, R. S., Kischell, E., and Kanade, T., 1998, “The Otto Aufranc Award. Image Guided Navigation System to Measure Intraoperatively Acetabular Implant Alignment,” Clin. Orthop. Relat. Res., 355(10), pp. 8–22. [CrossRef] [PubMed]
Dorr, L. D., 2006, “Computer Navigation for Total Hip Replacement,” Oper. Tech. Orthop., 16(2), pp. 112–119. [CrossRef]
Ybinger, T., and Kumpan, W., 2007, “Enhanced Acetabular Component Positioning Through Computer-Assisted Navigation,” Int. Orthop., 31(Suppl 1), pp. S35–S38. [CrossRef] [PubMed]
Sugano, N., 2013, “Computer-Assisted Orthopaedic Surgery and Robotic Surgery in Total Hip Arthroplasty,” Clin. Orthop. Surg., 5(1), pp. 1–9. [CrossRef] [PubMed]
Hananouchi, T., Saito, M., Koyama, T., Hagio, K., Murase, T., Sugano, N., and Yoshikawa, H., 2009, “Tailor-Made Surgical Guide Based on Rapid Prototyping Technique for Cup Insertion in Total Hip Arthroplasty,” Int. J. Med. Robot. Comput. Assist. Surg., 5(2), pp. 164–169. [CrossRef]
Buller, L., Smith, T., Bryan, J., Klika, A., Barsoum, W., and Iannotti, J. P., 2013, “The Use of Patient-Specific Instrumentation Improves the Accuracy of Acetabular Component Placement,” J. Arthroplasty, 28(4), pp. 631–636. [CrossRef] [PubMed]
McGovern, T. F., 2011, “Customized Patient Instrumentation for Total Knee Arthroplasty: Preoperative Planning and Intraoperative Technique,” Am. J. Orthop., 40(11 Suppl), pp. 9–12. [PubMed]
Johnson, D. R., 2011, “The Benefits of Customized Patient Instrumentation to Lower-Volume Joint Replacement Surgeons: Results From Practice,” Am. J. Orthop., 40(11 Suppl), pp. 13–16. [PubMed]
Small, T., Krebs, V., Molloy, R., Bryan, J., Klika, A. K., and Barsoum, W. K., 2013, “Comparison of Acetabular Shell Position Using Patient Specific Instruments vs. Standard Surgical Instruments: A Randomized Clinical Trial,” J. Arthroplasty, 29(5), pp. 1030–1037. [CrossRef] [PubMed]
Amuwa, C., and Dorr, L. D., 2008, “The Combined Anteversion Technique for Acetabular Component Anteversion,” J. Arthroplasty, 23(7), pp. 1068–1070. [CrossRef] [PubMed]
Yoshimine, F., 2006, “The Safe-Zones for Combined Cup and Neck Anteversions That Fulfill the Essential Range of Motion and Their Optimum Combination in Total Hip Replacements,” J. Biomech., 39(7), pp. 1315–1323. [CrossRef] [PubMed]
Kumar, M. A., Shetty, M. S., Kiran, K. G., and Kini, A. R., 2012, “Validation of Navigation Assisted Cup Placement in Total Hip Arthroplasty,” Int. Orthop., 36(1), pp. 17–22. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

X-ray of poorly implanted THA demonstrating suboptimal positioning measures: (A) leg length discrepancy, (B) hip width discrepancy, (C) low acetabular vertical inclination and no acetabular anteversion, (D) undersized femoral stem, and (E) a pelvic screw penetrating the pelvis near the sciatic notch

Grahic Jump Location
Fig. 2

Anterior view of a pelvis showing the cup implant's angle of vertical inclination (line A)

Grahic Jump Location
Fig. 3

Oblique view of a pelvis, down the line of vertical inclination (point A), showing the cup implant's angle of anteversion (line B)

Grahic Jump Location
Fig. 4

Superior view of a femur showing the femoral head's angle of anteversion

Grahic Jump Location
Fig. 5

Anterior view of a femur showing the coordinate planes

Grahic Jump Location
Fig. 6

Anterior view of a pelvis, showing the coordinate planes

Grahic Jump Location
Fig. 7

Left view of a pelvis, showing the coordinate planes

Grahic Jump Location
Fig. 19

Reamer/impactor guide in use on the cadaver

Grahic Jump Location
Fig. 18

Reamer/impactor guide in use on a foam bone model

Grahic Jump Location
Fig. 17

Three-dimensional cad model of reamer and impactor guide

Grahic Jump Location
Fig. 16

Acetabular pin locator guide in use on the cadaveric acetabulum with surgical pins drilled into bone

Grahic Jump Location
Fig. 15

Acetabular pin locator guide on a foam bone model

Grahic Jump Location
Fig. 14

Three-dimensional cad model of acetabular pin locator

Grahic Jump Location
Fig. 13

Femoral resection guide in use on the cadaveric femoral neck with surgical pins drilled into bone

Grahic Jump Location
Fig. 12

Femoral resection guide on foam bone model, showing the medial edge to guide anteversion

Grahic Jump Location
Fig. 11

Three-dimensional cad template of femur with a resection guide showing the design features: (1) the patient-specific surface, (2) the resection surface, and (3) the medial edge to mark femoral version

Grahic Jump Location
Fig. 10

Three-dimensional cad template overlays the patient-specific guides over the hip anatomy

Grahic Jump Location
Fig. 9

X-ray illustrating a common method of templating a THA

Grahic Jump Location
Fig. 8

Three-dimensional cad template overlays the total hip replacement implant over the hip anatomy

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In