Technical Brief

An Adjustable-Length Intramedullary Nail: Development and Mechanical Evaluation in Cervine Tibiae

[+] Author and Article Information
Alexander D. W. Throop

Clarkson University,
8 Clarkson Avenue, Box 5725,
Potsdam, NY 13699
e-mail: throopad@clarkson.edu

Alexander Martin Clark, Jr.

Sharon Hospital,
50 Hospital Hill Road,
Sharon, CT 06069
e-mail: drmartyclark@yahoo.com

Laurel Kuxhaus

Clarkson University,
8 Clarkson Avenue, Box 5725,
Potsdam, NY 13699
e-mail: lkuxhaus@clarkson.edu

Manuscript received June 25, 2014; final manuscript received September 13, 2014; published online April 24, 2015. Assoc. Editor: Rita M. Patterson.

J. Med. Devices 9(2), 024503 (Jun 01, 2015) (5 pages) Paper No: MED-14-1195; doi: 10.1115/1.4030152 History: Received June 25, 2014; Revised September 13, 2014; Online April 24, 2015

Intramedullary nails are the gold standard of fracture fixation, yet problems can still arise due to their manufacture in discrete lengths. Patient outcomes are less favorable when implanted with an improper length nail, and the wide range of discrete length options can increase the size hospital inventory. Prototypes of adjustable-length intramedullary nails were developed and tested in axial compression, torsion, and four-point bending. These prototypes are comparable to conventional nails in axial and bending stiffness. The torsional stiffness of the prototypes is less than that of conventional nails, but may be sufficient for clinical use.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Eveleigh, R. J., 1995, “A Review of Biomechanical Studies of Intramedullary Nails,” Med. Eng. Phys., 17(5), pp. 323–331. [CrossRef] [PubMed]
Küntscher, G. B. G., 1958, “The Küntscher Method of Intramedullary Fixation,” J. Bone Jt. Surg., 40(1), pp. 17–26. http://jbjs.org/content/40/1/17
Knothe, U., Knothe Tate, M. L., Klaue, K., and Perren, S. M., 2000, “Development and Testing of a New Self-Locking Intramedullary Nail System: Testing of Handling Aspects and Mechanical Properties,” Injury, 31(8), pp. 617–626. [CrossRef] [PubMed]
Küçükdurmaz, F., Akpınar, F., Saka, G., Sağlam, N., and Acı, C., 2012, “A Newly Designed Intramedullary Nail With Distal Interlocking System for Tibia Fractures in Adults—The Clinical Results,” Turk. J. Trauma Emergency Surg., 18(3), pp. 243–249. [CrossRef]
Wang, G., Pan, T., Peng, X., and Wang, J., 2008, “A New Intramedullary Nailing Device for the Treatment of Femoral Shaft Fractures: A Biomechanical Study,” Clin. Biomech., 23(3), pp. 305–312. [CrossRef]
Murdoch, A. H., Shepherd, D. E., Mathias, K. J., and Stevenson, E. C., 2003, “Design of a Retractable Intramedullary Nail for the Humerus,” Bio-Med. Mater. Eng., 13(3), pp. 297–307. http://iospress.metapress.com/content/394EVJGXWC6L2VKA
Jovanovic, A., Pirpiris, M., Semirli, H., and Doig, S. G., 2004, “FixionTM Nails for Humeral Fractures,” Injury, 35(11), pp. 1140–1142. [CrossRef] [PubMed]
Koval, K. J., Clapper, M. F., Brumback, R. J., Ellison, P. S., Jr., Poka, A., Bathon, G. H., and Burgess, A. R., 1991, “Complications of Reamed Intramedullary Nails of the Tibia,” J. Orthop. Trauma, 5(2), pp. 184–189. [CrossRef] [PubMed]
Kenwright, J., and Gardner, T., 1998, “Mechanical Influences on Tibial Fracture Healing,” Clin. Orthop. Relat. Res., 355(Suppl.), pp. S179–S190. http://journals.lww.com/corr/Fulltext/1998/10001/Mechanical_Influences_on_Tibial_Fracture_Healing_.19.aspx [PubMed]
Stryker, 2009, “T2 Tibial Nailing System Operative Technique,” Stryker Corporations, Kalamazoo, MI, p. 22.
Synthes, 2012, “Expert Tibial Nail: Technique Guide,” Synthes Inc., West Chester, PA.
Smith & Nephew, 2007, “Trigen Meta-Nail: Tibial Nail System Surgical Technique,” Smith & Nephew Inc., Memphis, TN, accessed Sept., 2012, http://www.smith-nephew.com/global/assets/pdf/temp/71181112_meta-nail_tibia_st_low_res_(copy-1).pdf
Throop, A., Landauer, A., Clark, A., and Kuxhaus, L., “Cervine Tibia Morphology and Mechanical Strength: A Suitable Tibia Model?,” ASME J. Biomed. Eng.137(3), p. 034503. [CrossRef]
Cristofolini, L., and Viceconti, M., 2000, “Mechanical Validation of Whole Bone Composite Tibia Models,” J. Biomech., 33(3), pp. 279–288. [CrossRef] [PubMed]
Dailey, H. L., Daly, C. J., Galbraith, J. G., Cronin, M., and Harty, J. A., 2013, “The Flexible Axial Stimulation (FAST) Intramedullary Nail Provides Interfragmentary Micromotion and Enhanced Torsional Stability,” Clin. Biomech., 28(5), pp. 579–585. [CrossRef]
Lu, Y., Nemke, B., Lorang, D. M., Trip, R., Kobayashi, H., and Markel, M. D., 2009, “Comparison of a New Braid Fixation System to an Interlocking Intramedullary Nail for Tibial Osteotomy Repair in an Ovine Model,” Vet. Surg., 38(4), pp. 467–476. [CrossRef] [PubMed]
ASTM, 2007, Standard Specification and Test Methods for Intramedullary Fixation Devices, ASTM International, Conshohocken, PA.
Hoenig, M., Gao, F., Kinder, J., Zhang, L.-Q., Collinge, C., and Merk, B. R., 2010, “Extra-Articular Distal Tibia Fractures: A Mechanical Evaluation of 4 Different Treatment Methods,” J. Orthop. Trauma, 24(1), pp. 30–35. [CrossRef] [PubMed]
Klein, P., Opitz, M., Schell, H., Taylor, W. R., Heller, M. O., Kassi, J. P., Kandziora, F., and Duda, G. N., 2004, “Comparison of Unreamed Nailing and External Fixation of Tibial Diastases—Mechanical Conditions During Healing and Biological Outcome,” J. Orthop. Res., 22(5), pp. 1072–1078. [CrossRef] [PubMed]
Schüller, M., Herndler, S., Weninger, P., Jamek, M., Redl, H., and Tschegg, E. K., 2008, “Stiffness and Permanent Deformation of Extra-Articular Distal Tibia Fractures Treated With Unreamed Small Diameter Intramedullary Nailing,” Mater. Sci. Eng. C, 28(8), pp. 1209–1216. [CrossRef]
Tschegg, E. K., Herndler, S., Weninger, P., Jamek, M., Stanzl-Tschegg, S., and Redl, H., 2008, “Stiffness Analysis of Tibia-Implant System Under Cyclic Loading,” Mater. Sci. Eng. C, 28(8), pp. 1203–1208. [CrossRef]
Wahnert, D., Stolarczyk, Y., Hoffmeier, K., Raschke, M. J., Hofmann, G. O., and Mückley, T., 2012, “The Primary Stability of Angle-Stable Versus Conventional Locked Intramedullary Nails,” Int. Orthop., 36(5), pp. 1059–1064. [CrossRef] [PubMed]
Gradl, G., Herlyn, P., Emmerich, J., Friebe, U., Martin, H., and Mittlmeier, T., 2014, “Fracture Near Press-On Interlocking Enhances Callus Mineralisation in a Sheep Midshaft Tibia Osteotomy Model,” Injury, 45(Suppl. 1), pp. S66–S70. [CrossRef] [PubMed]
Bartel, D., Davy, D., and Keaveny, T., 2006, Orthopaedic Biomechanics: Mechanics and Design in Musculoskeletal Systems, Pearson–Prentice Hall, Upper Saddle River, NJ.
Lewis, D., Lutton, C., Wilson, L. J., Crawford, R. W., and Goss, B., 2009, “Low Cost Polymer Intramedullary Nails for Fracture Fixation: A Biomechanical Study in a Porcine Femur Model,” Arch. Orthop. Trauma Surg., 129(6), pp. 817–822. [CrossRef] [PubMed]
Feng, W., Fu, L., Liu, J., Qi, X., Li, D., and Yang, C., 2012, “Biomechanical Evaluation of Various Fixation Methods for Proximal Extra-Articular Tibial Fractures,” J. Surg. Res., 178(2), pp. 722–727. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Picture of (a) prototype A with an enlargement to show the set screw locking mechanism and (b) prototype B with an enlargement to show the locking pin

Grahic Jump Location
Fig. 2

An (a) M/L and (b) A/P X-ray of prototype A inserted into a cervine tibia specimen

Grahic Jump Location
Fig. 3

Illustration of three testing modes; intact cervine tibiae are shown in the axial and torsional examples

Grahic Jump Location
Fig. 4

Axial compression, torsion, and four-point bending stiffnesses of cervine tibiae, prototypes A and B, reported Synthes Expert nails, and values as reported from human tibiae [14,15,18-22]




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In