0
Special Section Technical Briefs

The Evaluation of Blood Damage in a Left Ventricular Assist Device1

[+] Author and Article Information
Oyungerel Myagmar, Steven W. Day

Mechanical Engineering Department,
Rochester Institute of Technology,
Rochester, NY 14623

Accepted and presented at The Design of Medical Devices Conference (DMD2015), April 13-16, 2015, Minneapolis, MN, USA.

Manuscript received March 3, 2015; final manuscript received March 16, 2015; published online April 24, 2015. Editor: Arthur Erdman.

J. Med. Devices 9(2), 020914 (Jun 01, 2015) (2 pages) Paper No: MED-15-1049; doi: 10.1115/1.4030122 History: Received March 03, 2015; Revised March 16, 2015; Online April 24, 2015

First Page Preview

View Large
First page PDF preview
FIGURES IN THIS ARTICLE
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Behbahani, M., Behr, M., Hormes, M., Steinseifer, U., Arora, D., Coronado, O., and Pasquali, M., 2009, “A Review of Computational Fluid Dynamics Analysis of Blood Pumps,” Eur. J. Appl. Math., 20(4), pp. 363–397. [CrossRef]
Stewart, S. F. C., Paterson, E. G., Burgreen, G. W., Hariharan, P., Giarra, M., Reddy, V., Day, S. W., Manning, K B., Deutsch, S., Berman, M. R., Berman, M. R., Myers, M. R., and Malinauskas, R. A., 2012, “Assessment of CFD Performance in Simulations of an Idealized Medical Device: Results of FDA's First Computational Interlaboratory Study,” Cardiovasc. Eng. Technol., 3(2), pp. 139–160. [CrossRef]
Leverett, L. B., Hellums, J. D., Alfrey, C. P., and Lynch, E. C., 1972, “Red Blood Cell Damage by Shear Stress,” Biophys. J., 12(3), pp. 257–273. [CrossRef] [PubMed]
Giersiepen, M., Wurzinger, L., Opitz, R., and Reul, H., 1990, “Estimation of Shear Stress-Related Blood Damage in Heart Valve Prostheses: In Vitro Comparison of 25 Aortic Valves,” Int. J. Artif. Organs, 13(5), pp. 300–306. http://europepmc.org/abstract/med/2365485 [PubMed]
Heuser, G., and Opitz, R., 1980, “A Couette Viscometer for Short Time Shearing of Blood,” Biorheology, 17(1–2), pp. 17–24. [PubMed]
Chua, L. P., Song, G., Lim, T. M., and Zhou, T., 2006, “Numerical Analysis of the Inner Flow Field of a Biocentrifugal Blood Pump,” Artif. Organs, 30(6), pp. 467–477. [CrossRef] [PubMed]
Song, X., Throckmorton, A. L., Wood, H. G., Antaki, J. F., and Olsen, D. B., 2004, “Quantitative Evaluation of Blood Damage in a Centrifugal VAD by Computational Fluid Dynamics,” ASME J. Fluids Eng., 126(3), pp. 410–418. [CrossRef]
Apel, J., Paul, R., Klaus, S., Siess, T., and Reul, H., 2001, “Assessment of Hemolysis Related Quantities in a Microaxial Blood Pump by Computational Fluid Dynamics,” Artif. Organs, 25(5), pp. 341–347. [CrossRef] [PubMed]
Song, X., Untaroiu, A., Wood, H. G., Allaire, P. E., Throckmorton, A. L., Day, S. W., and Olsen, D. B., 2004, “Design and Transient Computational Fluid Dynamics Study of a Continuous Axial Flow Ventricular Assist Device,” ASAIO J., 50(3), pp. 215–224. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Comparison of CFD predictions and experimental data

Grahic Jump Location
Fig. 2

Particle rise inside LEV-VAD pump

Grahic Jump Location
Fig. 3

Shear stress inside LEV-VAD pump walls

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In