0
Research Papers

Validation of Cardiac Output as Reported by a Permanently Implanted Wireless Sensor

[+] Author and Article Information
Michael Tree

The George W. Woodruff School of Mechanical Engineering,
Georgia Institute of Technology,
387 Technology Circle, Suite 200,
Atlanta, GA 30313
e-mail: treem22@gatech.edu

Jason White

Mem. ASME
St. Jude Medical, Inc.,
387 Technology Circle, Suite 500,
Atlanta, GA 30313
e-mail: JWhite2@sjm.com

Prem Midha

The George W. Woodruff School of Mechanical Engineering,
Georgia Institute of Technology,
387 Technology Circle, Suite 200,
Atlanta, GA 30313
e-mail: prem@gatech.edu

Samantha Kiblinger

Coulter Department of Biomedical Engineering,
Georgia Institute of Technology,
387 Technology Circle, Suite 200,
Atlanta, GA 30313
e-mail: skiblinger3@gatech.edu

Ajit Yoganathan

Mem. ASME
Coulter Department of Biomedical Engineering,
Georgia Institute of Technology,
387 Technology Circle, Suite 200,
Atlanta, GA 30313
e-mail: ajit.yoganathan@bme.gatech.edu

1Corresponding author.

Manuscript received April 21, 2015; final manuscript received October 1, 2015; published online November 5, 2015. Editor: Rupak K. Banerjee.

J. Med. Devices 10(1), 011001 (Nov 05, 2015) (7 pages) Paper No: MED-15-1168; doi: 10.1115/1.4031799 History: Received April 21, 2015; Revised October 01, 2015

The CardioMEMS heart failure (HF) system was tested for cardiac output (CO) measurement accuracy using an in vitro mock circulatory system. A software algorithm calculates CO based on analysis of the pressure waveform as measured from the pulmonary artery, where the CardioMEMS system resides. Calculated CO was compared to that from reference flow probe in the circulatory system model. CO measurements were compared over a clinically relevant range of stroke volumes and heart rates with normal, pulmonary hypertension (PH), decompensated left heart failure (DLHF), and combined DHLF + PH hemodynamic conditions. The CardioMEMS CO exhibited minimal fixed and proportional bias.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Abraham, W. T. , Adamson, P. B. , Bourge, R. C. , Aaron, M. F. , Costanzo, M. R. , Stevenson, L. W. , Strickland, W. , Neelagaru, S. , Raval, N. , Krueger, S. , Weiner, S. , Shavelle, D. , Jeffries, B. , and Yadav, J. S. , 2011, “ Wireless Pulmonary Artery Haemodynamic Monitoring in Chronic Heart Failure: A Randomised Controlled Trial,” Lancet, 377(9766), pp. 658–666. [CrossRef] [PubMed]
Borges, A. C. , Wensel, R. , Opitz, C. , Bauer, U. , Baumann, G. , and Kleber, F. X. , 1997, “ Relationship Between Haemodynamics and Morphology in Pulmonary Hypertension. A Quantitative Intravascular Ultrasound Study,” Eur. Heart J., 18(12), pp. 1988–1994. [CrossRef] [PubMed]
Sanz, J. , Kariisa, M. , Dellegrottaglie, S. , Prat-González, S. , Garcia, M. J. , Fuster, V. , and Rajagopalan, S. , 2009, “ Evaluation of Pulmonary Artery Stiffness in Pulmonary Hypertension With Cardiac Magnetic Resonance,” JACC Cardiovasc. Imaging, 2(3), pp. 286–295. [CrossRef] [PubMed]
Milnor, W. R. , Jose, A. D. , and Mcgaff, C. J. , 1960, “ Pulmonary Vascular Volume, Resistance, and Compliance in Man,” Circulation, 22(1), pp. 130–137. [CrossRef] [PubMed]
Hall, J. E. , and Guyton, A. C. , 2011, Guyton and Hall Textbook of Medical Physiology, Saunders/Elsevier, Philadelphia, PA.
Rabbah, J. P. , Saikrishnan, N. , and Yoganathan, A. P. , 2013, “ A Novel Left Heart Simulator for the Multi-Modality Characterization of Native Mitral Valve Geometry and Fluid Mechanics,” Ann. Biomed. Eng., 41(2), pp. 305–315. [CrossRef] [PubMed]
Santhanakrishnan, A. , Maher, K. O. , Tang, E. , Khiabani, R. H. , Johnson, J. , and Yoganathan, A. P. , 2013, “ Hemodynamic Effects of Implanting a Unidirectional Valve in the Inferior Vena Cava of the Fontan Circulation Pathway: An In Vitro Investigation,” Am. J. Physiol. Heart Circ. Physiol., 305(10), pp. H1538–H1547. [CrossRef] [PubMed]
Zannoli, R. , Corazza, I. , and Branzi, A. , 2009, “ Mechanical Simulator of the Cardiovascular System,” Phys. Med., 25(2), pp. 94–100. [CrossRef] [PubMed]
Hamilton, W. F. , and Remington, J. W. , 1946, “ The Measurement of the Stroke Volume from the Pressure Pulse,” Am. J. Physiol., 148(1), pp. 14–24.
Remington, J. W. , and Noback, C. R. , 1948, “ Volume Elasticity Characteristics of the Human Aorta and Prediction of the Stroke Volume From the Pressure Pulse,” Am. J. Physiol., 153(2), pp. 298–308. [PubMed]
Warner, H. R. , Swan, H. J. C. , Connolly, D. C. , Tompkins, R. G. , and Wood, E. H. , 1953, “ Quantitation of Beat-to-Beat Changes in Stroke Volume From the Aortic Pulse Contour in Man,” J. Appl. Physiol., 5(9), pp. 495–507. [PubMed]
Herd, J. A. , Leclair, N. R. , and Simon, W. , 1966, “ Arterial Pressure Pulse Contours During Hemorrhage in Anesthetized Dogs,” J. Appl. Physiol., 21(6), pp. 1864–1868. [PubMed]
Wiener, F. , Morkin, E. , Skalak, R. , and Fishman, A. P. , 1966, “ Wave Propagation in the Pulmonary Circulation,” Circ. Res., 19(4), pp. 834–850. [CrossRef] [PubMed]
Kouchoukos, N. T. , Sheppard, L. C. , and McDonald, D. A. , 1970, “ Estimation of Stroke Volume in the Dog by a Pulse Contour Method,” Circ. Res., 26(5), pp. 611–623. [CrossRef] [PubMed]
Alderman, E. L. , Branzi, A. , Sanders, W. , Brown, B. W. , and Harrison, D. C. , 1972, “ Evaluation of the Pulse-Contour Method of Determining Stroke Volume in Man,” Circulation, 46(3), pp. 546–558. [CrossRef] [PubMed]
Zacharoulis, A. A. , Evans, T. R. , Ziady, G. M. , Coltart, D. J. , and Shillingford, J. P. , 1975, “ Measurement of Stroke Volume From Pulmonary Artery Pressure Record in Man,” Br. Heart J., 37(1), pp. 20–25. [CrossRef] [PubMed]
Bourgeois, M. J. , Gilbert, B. K. , Von Bernuth, G. , and Wood, E. H. , 1976, “ Continuous Determination of Beat to Beat Stroke Volume From Aortic Pressure Pulses in the Dog,” Circ. Res., 39(1), pp. 15–24. [CrossRef] [PubMed]
DeLoskey, A. F. , Nichols, W. W. , Conti, C. R. , and Pepine, C. J. , 1978, “ Estimation of Beat-to-Beat Stroke Volume From the Pulmonary Arterial Pressure Contour in Man,” Med. Biol. Eng. Comput., 16(6), pp. 707–714. [CrossRef] [PubMed]
Murgo, J. P. , Westerhof, N. , Giolma, J. P. , and Altobelli, S. A. , 1980, “ Aortic Input Impedance in Normal Man: Relationship to Pressure Wave Forms,” Circulation, 62(1), pp. 105–116. [CrossRef] [PubMed]
Tannenbaum, G. A. , Mathews, D. , and Weissman, C. , 1993, “ Pulse Contour Cardiac Output in Surgical Intensive Care Unit Patients,” J. Clin. Anesth., 5(6), pp. 471–478. [CrossRef] [PubMed]
Karamanoglu, M. , and Feneley, M. P. , 1999, “ Late Systolic Pressure Augmentation: Role of Left Ventricular Outflow Patterns,” Am. J. Physiol.—Heart Circ. Physiol., 277, pp. H481–H487.
Wonisch, M. , Fruhwald, F. M. , Maier, R. , Watzinger, N. , Hödl, R. , Kraxner, W. , Perthold, W. , and Klein, W. W. , 2005, “ Continuous Haemodynamic Monitoring During Exercise in Patients With Pulmonary Hypertension,” Int. J. Cardiol., 101(3), pp. 415–420. [CrossRef] [PubMed]
Karamanoglu, M. , McGoon, M. , Frantz, R. P. , Benza, R. L. , Bourge, R. C. , Barst, R. J. , Kjellström, B. , and Bennett, T. D. , 2007, “ Right Ventricular Pressure Waveform and Wave Reflection Analysis in Patients With Pulmonary Arterial Hypertension,” Chest, 132(1), pp. 37–43. [CrossRef] [PubMed]
Karamanoglu, M. , Bennett, T. D. , Ståhlberg, M. , Splett, V. , Kjellström, B. , Linde, C. , and Braunschweig, F. , 2011, “ Estimation of Cardiac Output in Patients With Congestive Heart Failure by Analysis of Right Ventricular Pressure Waveforms,” Biomed. Eng. Online, 10, p. 36. [CrossRef] [PubMed]
Ohlsson, A. , Nordlander, R. , Bennett, T. D. , Bitkover, C. , Kjellström, B. , Lee, B. , and Rydén, L. , 1998, “ Continuous Ambulatory Haemodynamic Monitoring With an Implantable System. The Feasibility of a New Technique,” Eur. Heart J., 19(1), pp. 174–184. [CrossRef] [PubMed]
Karamanoglu, M. , and Bennett, T. D. , 2006, “ A Right Ventricular Pressure Waveform Based Pulse Contour Cardiac Output Algorithm in Canines.,” Cardiovasc. Eng., 6(3), pp. 83–92. [CrossRef] [PubMed]
Westerhof, N. , Lankhaar, J.-W. , and Westerhof, B. E. , 2009, “ The Arterial Windkessel,” Med. Biol. Eng. Comput., 47(2), pp. 131–141. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 3

o Patient-specific pulmonary artery anatomy acquired from CT angiogram. The CardioMEMS pressure sensor location is highlighted by the circle.

Grahic Jump Location
Fig. 2

In Vitro mock circulation used to validate the CardioMEMS HF system CO measurement

Grahic Jump Location
Fig. 1

CardioMEMS HF system with wireless PA pressure sensor implant (left) and patient home electronics unit (right)

Grahic Jump Location
Fig. 4

An example of pulmonary artery pressure waveform from an implanted CardioMEMS sensor with relevant parameters. Pd, diastolic pressure; mSPAP, mean systolic pulmonary artery pressure; Pi, pressure at RV incident; and Ps, pressure at peak systole.

Grahic Jump Location
Fig. 6

Bland–Altman plot indicating the fixed and proportional bias between the reference CO measurement and the CO estimated by the CardioMEMS system, over the presented range of simulated benchtop hemodynamic conditions, with three repetitions. The dashed lines indicate the 95% limits of agreement.

Grahic Jump Location
Fig. 7

Bland–Altman analyses of CardioMEMS HF system CO measurement per simulated physiological condition. PH, pulmonary hypertension; DLHF, decompensated left heart failure; and CMHFS, CardioMEMS heart failure system.

Grahic Jump Location
Fig. 5

Pressure waveforms from each of the modeled physiological conditions as recorded by the CardioMEMS HF system. DLHF, decompensated left heart failure and PH, pulmonary hypertension.

Grahic Jump Location
Fig. 8

CO change analysis. The baseline calibration set point (CO = 4.9 l/min) is used as the origin.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In