0
Technical Brief

Design of a Vestibular Prosthesis for Sensation of Gravitoinertial Acceleration1

[+] Author and Article Information
Kristin N. Hageman, Margaret R. Chow, Peter J. Boutros

Department of Biomedical Engineering,
Johns Hopkins School of Medicine,
Baltimore, MD 21205

Dale Roberts

Department of Otolaryngology—Head and Neck Surgery,
Johns Hopkins School of Medicine,
Baltimore, MD 21205

Angela Tooker, Kye Lee, Sarah Felix, Satinderpall S. Pannu

Lawrence Livermore National Laboratory,
Livermore, CA 94550

Charles C. Della Santina

Department of Biomedical Engineering,
Johns Hopkins School of Medicine,
Baltimore, MD 21205;
Department of Otolaryngology—Head and Neck Surgery,
Johns Hopkins School of Medicine,
Baltimore, MD 21205

DOI: 10.1115/1.4033759Manuscript received March 1, 2016; final manuscript received March 16, 2016; published online August 1, 2016. Editor: William Durfee.

J. Med. Devices 10(3), 030923 (Aug 01, 2016) (3 pages) Paper No: MED-16-1075; doi: 10.1115/1.4033759 History: Received March 01, 2016; Revised March 16, 2016

First Page Preview

View Large
First page PDF preview
FIGURES IN THIS ARTICLE
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Sun, D. Q. , Ward, B. K. , Semenov, Y. R. , Carey, J. P. , and Della Santina, C. C. , 2014, “ Bilateral Vestibular Deficiency,” JAMA Otolaryngol. Neck Surg., 140(6), pp. 527–534. [CrossRef]
Fridman, G. Y. , and Della Santina, C. C. , 2012, “ Progress Toward Development of a Multichannel Vestibular Prosthesis for Treatment of Bilateral Vestibular Deficiency,” Anat. Rec. Adv. Integr. Anat. Evol. Biol., 295(11), pp. 2010–2029. [CrossRef]
Gong, W. , and Merfeld, D. M. , 2002, “ System Design and Performance of a Unilateral Horizontal Semicircular Canal Prosthesis,” IEEE Trans. Biomed. Eng., 49(2), pp. 175–181. [CrossRef] [PubMed]
Della Santina, C. C. , Migliaccio, A. , and Patel, A. H. , 2007, “ A Multichannel Semicircular Canal Neural Prosthesis Using Electrical Stimulation to Restore 3-D Vestibular Sensation,” IEEE Trans. Biomed. Eng., 54(6 Pt. 1), pp. 1016–1030. [CrossRef] [PubMed]
Chiang, B. , Fridman, G. Y. , Chenkai, D. , Rahman, M. A. , and Della Santina, C. C. , 2011, “ Design and Performance of a Multichannel Vestibular Prosthesis That Restores Semicircular Canal Sensation in Rhesus Monkey,” IEEE Trans. Neural Syst. Rehabil. Eng., 19(5), pp. 588–598. [CrossRef] [PubMed]
Nie, K. , Ling, L. , Bierer, S. M. , Kaneko, C. R. S. , Fuchs, A. F. , Oxford, T. , Rubinstein, J. T. , and Phillips, J. O. , 2013, “ An Experimental Vestibular Neural Prosthesis: Design and Preliminary Results With Rhesus Monkeys Stimulated With Modulated Pulses,” IEEE Trans. Biomed. Eng., 60(6), pp. 1685–1692. [CrossRef] [PubMed]
Hayden, R. , Sawyer, S. , Frey, E. , Mori, S. , Migliaccio, A. A. , and Della Santina, C. C. , 2011, “ Virtual Labyrinth Model of Vestibular Afferent Excitation Via Implanted Electrodes: Validation and Application to Design of a Multichannel Vestibular Prosthesis,” Exp. Brain Res., 210(3), pp. 623–640. [CrossRef] [PubMed]
Robblee, L. S. , and Rose, T. L. , 1990, “ Electrochemical Guidelines for Selection of Protocols and Electrode Materials for Neural Stimulation,” Neural Prostheses: Fundamental Studies, W. F. Agnew and D. B. McCreery , eds., Prentice Hall, Englewood Cliffs, NJ, pp. 26–66.
Desai, S. S. , Zeh, C. , and Lysakowski, A. , 2005, “ Comparative Morphology of Rodent Vestibular Periphery—I: Saccular and Utricular Maculae,” J. Neurophysiol., 93(1), pp. 251–266. [CrossRef] [PubMed]
Goldberg, J. M. , Desmadryl, G. , Baird, R. A. , and Fernández, C. , 1990, “ The Vestibular Nerve of the Chinchilla—IV: Discharge Properties of Utricular Afferents,” J. Neurophysiol., 63(4), pp. 781–790. [PubMed]
Hageman, K. N. , Kalayjian, Z. K. , Tejada, F. , Chiang, B. , Rahman, M. A. , Fridman, G. Y. , Dai, C. , Pouliquen, P. O. , Georgiou, J. , Della Santina, C. C. , and Andreou, A. G. , 2015, “ A CMOS Neural Interface for a Multichannel Vestibular Prosthesis,” IEEE Trans. Biomed. Circuits Syst., 10(2), pp. 269–279. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Johns Hopkins MVP architecture. Pre-existing framework of the MVP shown in solid line boxes [4]. Dashed boxes and underlined text indicate what must be added to restore utricle/saccule function.

Grahic Jump Location
Fig. 2

(a) Three-dimensional reconstruction of the chinchilla vestibular labyrinth [7] used to design electrodes based on the toroidal fluid spaces of the inner ear and spacing of the nerve and neurosensory epithelia, which are the targets for prosthetic stimulation (indicated with white arrows). (b) The electrode design based on the geometry of the otolith end organs (outlines of otoliths from Ref. [9]).

Grahic Jump Location
Fig. 3

(a) Polyimide electrode arrays: (a) shank intended for horizontal SCC and saccule, (b) shank for superior SCC and utricle, and (c) shank for posterior canal. (b) Voltage recordings during biphasic current driven stimulation using the new electrode arrays.

Grahic Jump Location
Fig. 4

Motion sensor signals and instantaneous PFM electrode output during (a) yaw rotation, (b) lateral translation, and (c) simultaneous yaw and lateral movements

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In