0
Technical Brief

Design of a Vestibular Prosthesis for Sensation of Gravitoinertial Acceleration1

[+] Author and Article Information
Kristin N. Hageman, Margaret R. Chow, Peter J. Boutros

Department of Biomedical Engineering,
Johns Hopkins School of Medicine,
Baltimore, MD 21205

Dale Roberts

Department of Otolaryngology—Head and Neck Surgery,
Johns Hopkins School of Medicine,
Baltimore, MD 21205

Angela Tooker, Kye Lee, Sarah Felix, Satinderpall S. Pannu

Lawrence Livermore National Laboratory,
Livermore, CA 94550

Charles C. Della Santina

Department of Biomedical Engineering,
Johns Hopkins School of Medicine,
Baltimore, MD 21205;
Department of Otolaryngology—Head and Neck Surgery,
Johns Hopkins School of Medicine,
Baltimore, MD 21205

DOI: 10.1115/1.4033759Manuscript received March 1, 2016; final manuscript received March 16, 2016; published online August 1, 2016. Editor: William Durfee.

J. Med. Devices 10(3), 030923 (Aug 01, 2016) (3 pages) Paper No: MED-16-1075; doi: 10.1115/1.4033759 History: Received March 01, 2016; Revised March 16, 2016

First Page Preview

View Large
First page PDF preview
FIGURES IN THIS ARTICLE
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Grahic Jump Location
Fig. 1

Johns Hopkins MVP architecture. Pre-existing framework of the MVP shown in solid line boxes [4]. Dashed boxes and underlined text indicate what must be added to restore utricle/saccule function.

Grahic Jump Location
Fig. 2

(a) Three-dimensional reconstruction of the chinchilla vestibular labyrinth [7] used to design electrodes based on the toroidal fluid spaces of the inner ear and spacing of the nerve and neurosensory epithelia, which are the targets for prosthetic stimulation (indicated with white arrows). (b) The electrode design based on the geometry of the otolith end organs (outlines of otoliths from Ref. [9]).

Grahic Jump Location
Fig. 3

(a) Polyimide electrode arrays: (a) shank intended for horizontal SCC and saccule, (b) shank for superior SCC and utricle, and (c) shank for posterior canal. (b) Voltage recordings during biphasic current driven stimulation using the new electrode arrays.

Grahic Jump Location
Fig. 4

Motion sensor signals and instantaneous PFM electrode output during (a) yaw rotation, (b) lateral translation, and (c) simultaneous yaw and lateral movements

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In