Research Papers

A Novel Approach to Design Lesion-Specific Stents for Minimum Recoil

[+] Author and Article Information
Muhammad Farhan Khan

Department of Mechanical,
Materials and Manufacturing Engineering,
Faculty of Engineering,
University of Nottingham,
University Park,
Nottingham NG72RD, UK
e-mail: eaxmfk@nottingham.ac.uk

David Brackett

Department of Mechanical,
Materials and Manufacturing Engineering,
Faculty of Engineering,
University of Nottingham,
University Park,
Nottingham NG72RD, UK
e-mail: David.Brackett@the-mtc.org

Ian Ashcroft

Department of Mechanical,
Materials and Manufacturing Engineering,
Faculty of Engineering,
University of Nottingham,
University Park,
Nottingham NG72RD, UK
e-mail: Ian.Ashcroft@nottingham.ac.uk

Christopher Tuck

Department of Mechanical,
Materials and Manufacturing Engineering,
Faculty of Engineering,
University of Nottingham,
University Park,
Nottingham NG72RD, UK
e-mail: Christopher.Tuck@nottingham.ac.uk

Ricky Wildman

Department of Chemical and Environmental Engineering,
Faculty of Engineering,
University of Nottingham,
University Park,
Nottingham NG72RD, UK
e-mail: ricky.wildman@nottingham.ac.uk

1Present address: The Manufacturing Technology Centre, Pilot Way, Ansty Business Park, Coventry CV7 9JU, UK.

2Corresponding author.

Manuscript received October 10, 2015; final manuscript received September 12, 2016; published online December 21, 2016. Assoc. Editor: John LaDisa.

J. Med. Devices 11(1), 011001 (Dec 21, 2016) (10 pages) Paper No: MED-15-1278; doi: 10.1115/1.4034880 History: Received October 10, 2015; Revised September 12, 2016

Stent geometries are obtained by topology optimization for minimized compliance under different stenosis levels and plaque material types. Three levels of stenosis by cross-sectional area, i.e., 30%, 40%, and 50% and three different plaque material properties, i.e., calcified, cellular, and hypocellular, were studied. The raw optimization results were converted to clear design concepts and their performance was evaluated by implanting them in their respective stenosed artery types using finite element analysis. The results were compared with a generic stent in similar arteries, which showed that the new designs showed less recoil. This work provides a concept that stents could be tailored to specific lesions in order to minimize recoil and maintain a patent lumen in stenotic arteries.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


National Health Service UK, 2013, “ Cardiovascular Disease,” National Health Service, London, accessed Mar. 27, 2013, http://www.nhs.uk/conditions/cardiovascular-disease/Pages/Introduction.aspx
Sigwart, U. , Puel, J. , Mirkovitch, V. , Joffre, F. , and Kappenberger, L. , 1987, “ Intravascular Stents to Prevent Occlusion and Restenosis After Transluminal Angioplasty,” N. Engl. J. Med., 316(12), pp. 701–706. [CrossRef] [PubMed]
McClean, D. R. , Eiger, N. L. , and Eigler, N. L. , 2001, “ Stent Design: Implications for Restenosis,” Rev. Cardiovasc. Med., 3(Suppl. 5), pp. S16–S22. http://europepmc.org/abstract/med/12478231
Hara, H. , Nakamura, M. , Palmaz, J. C. , and Schwartz, R. S. , 2006, “ Role of Stent Design and Coatings on Restenosis and Thrombosis,” Adv. Drug Delivery Rev., 58(3), pp. 377–86. [CrossRef]
Poncin, P. , and Proft, J. , 2003, “ Stent Tubing: Understanding the Desired Attributes,” Medical Device Materials: Proceedings of the Materials & Processes for Medical Devices Conference, ASM International, Sept. 8–10, 2003, Materials Park, OH, pp. 253–259. https://books.google.com/books?hl=en&lr=&id=Jv1Wysf1jv8C&oi=fnd&pg=PA253&dq=Stent+Tubing:+Understanding+the+Desired+Attributes&ots=HCcTWHgxdO&sig=qhaWeeWdYBPHTfo_VAttpr_OjEQ#v=onepage&q=Stent%20Tubing%3A%20Understanding%20the%20Desired%20Attributes&f=false
Morton, A. C. , Crossman, D. , and Gunn, J. , 2004, “ The Influence of Physical Stent Parameters Upon Restenosis,” Pathol. Biol. (Paris)., 52(4), pp. 196–205. [CrossRef] [PubMed]
Rogers, C. , and Edelman, E. R. , 1995, “ Endovascular Stent Design Dictates Experimental Restenosis and Thrombosis,” Circulation, 91(12), pp. 2995–3001. [CrossRef] [PubMed]
Kastrati, A. , Mehilli, J. , Dirschinger, J. , Pache, J. , Ulm, K. , Schühlen, H. , Seyfarth, M. , Schmitt, C. , Blasini, R. , Neumann, F. J. , and Schömig, A. , 2001, “ Restenosis After Coronary Placement of Various Stent Types,” Am. J. Cardiol., 87(1), pp. 34–9. [CrossRef] [PubMed]
Lee, R. T. , Grodzinsky, A. J. , Frank, E. H. , Kamm, R. D. , and Schoen, F. J. , 1991, “ Structure-Dependent Dynamic Mechanical Behavior of Fibrous Caps From Human Atherosclerotic Plaques,” Circulation, 83(5), pp. 1764–1770. [CrossRef] [PubMed]
Zhao, S. , Gu, L. , and Froemming, S. R. , 2012, “ Finite Element Analysis of the Implantation of a Self-Expanding Stent: Impact of Lesion Calcification,” ASME J. Med. Devices, 6(2), p. 021001. [CrossRef]
Elezi, S. , Kastrati, A. , Neumann, F.-J. , Hadamitzky, M. , Dirschinger, J. , and Schomig, A. , 1998, “ Vessel Size and Long-Term Outcome After Coronary Stent Placement,” Circulation, 98(18), pp. 1875–1880. [CrossRef] [PubMed]
Krankenberg, H. , Schlüter, M. , Steinkamp, H. J. , Bürgelin, K. , Scheinert, D. , Schulte, K.-L. , Minar, E. , Peeters, P. , Bosiers, M. , Tepe, G. , Reimers, B. , Mahler, F. , Tübler, T. , and Zeller, T. , 2007, “ Nitinol Stent Implantation Versus Percutaneous Transluminal Angioplasty in Superficial Femoral Artery Lesions up to 10 cm in Length: The Femoral Artery Stenting Trial (FAST),” Circulation, 116(3), pp. 285–292. [CrossRef] [PubMed]
García, A. , Peña, E. , and Martínez, M. A. , 2012, “ Influence of Geometrical Parameters on Radial Force During Self-Expanding Stent Deployment. Application for a Variable Radial Stiffness Stent,” J. Mech. Behav. Biomed. Mater., 10, pp. 166–175. [CrossRef] [PubMed]
Pericevic, I. , Lally, C. , Toner, D. , and Kelly, D. J. , 2009, “ The Influence of Plaque Composition on Underlying Arterial Wall Stress During Stent Expansion: The Case for Lesion-Specific Stents,” Med. Eng. Phys., 31(4), pp. 428–33. [CrossRef] [PubMed]
Nissen, S. E. , and Yock, P. , 2001, “ Intravascular Ultrasound: Novel Pathophysiological Insights and Current Clinical Applications,” Circulation, 103(4), pp. 604–616. [CrossRef] [PubMed]
Budoff, M. J. , Achenbach, S. , Blumenthal, R. S. , Carr, J. J. , Goldin, J. G. , Greenland, P. , Guerci, A. D. , Lima, J. A. C. , Rader, D. J. , Rubin, G. D. , Shaw, L. J. , and Wiegers, S. E. , 2006, “ Assessment of Coronary Artery Disease by Cardiac Computed Tomography,” Circulation, 114(16), pp. 1761–1791. [CrossRef] [PubMed]
Dweck, M. R. , Puntmann, V. O. , Vesey, A. T. , Fayad, Z. A. , and Nagel, E. , 2016, “ MR Imaging of Coronary Arteries and Plaques,” JACC Cardiovasc. Imaging, 9(3), pp. 306–316. [CrossRef] [PubMed]
Makowski, M. R. , Henningsson, M. , Spuentrup, E. , Kim, W. Y. , Maintz, D. , Manning, W. J. , and Botnar, R. M. , 2013, “ Characterization of Coronary Atherosclerosis by Magnetic Resonance Imaging,” Circulation, 128(11), pp. 1244–1255. [PubMed]
Huang, D. , Swanson, E. A. , Lin, C. P. , Schuman, J. S. , Stinson, W. G. , Chang, W. , Hee, M. R. , Flotte, T. , Gregory, K. , Puliafito, C. A. , and Fujimoto, J. G. , 1991, “ Optical Coherence Tomography,” Science, 254(5035), pp. 1178–1181. [CrossRef] [PubMed]
Kim, D.-H. , Lu, N. , Ghaffari, R. , Kim, Y.-S. , Lee, S. P. , Xu, L. , Wu, J. , Kim, R.-H. , Song, J. , Liu, Z. , Viventi, J. , de Graff, B. , Elolampi, B. , Mansour, M. , Slepian, M. J. , Hwang, S. , Moss, J. D. , Won, S.-M. , Huang, Y. , Litt, B. , and Rogers, J. A. , 2011, “ Materials for Multifunctional Balloon Catheters With Capabilities in Cardiac Electrophysiological Mapping and Ablation Therapy,” Nat Mater, 10(4), pp. 316–323. [CrossRef] [PubMed]
Slepian, M. J. , Ghaffari, R. , and Rogers, J. A. , 2011, “ Multifunctional Balloon Catheters of the Future,” Interventional Cardiology, 3(4), pp. 417–419. [CrossRef]
Iqbal, J. , Onuma, Y. , Ormiston, J. , Abizaid, A. , Waksman, R. , and Serruys, P. , 2014, “ Bioresorbable Scaffolds: Rationale, Current Status, Challenges, and Future,” Eur. Heart J., 35(12), pp. 765–776. [CrossRef] [PubMed]
Moore, J. E. , Soares, J. S. , and Rajagopal, K. R. , 2010, “ Biodegradable Stents: Biomechanical Modeling Challenges and Opportunities,” Cardiovasc. Eng. Technol., 1(1), pp. 52–65. [CrossRef]
Huang, X. , and Xie, Y. M. , 2010, Evolutionary Topology Optimization of Continuum Structures: Methods and Applications, Wiley, Chichester, UK.
Bendsøe, M. P. , and Kikuchi, N. , 1988, “ Generating Optimal Topologies in Structural Design Using a Homogenization Method,” Comput. Methods Appl. Mech. Eng., 71(2), pp. 197–224. [CrossRef]
Bendsøe, M. P. , 1989, “ Optimal Shape Design as a Material Distribution Problem,” Struct. Optim., 1(4), pp. 193–202. [CrossRef]
Zhou, M. , and Rozvany, G. I. N. , 1991, “ The COC Algorithm, Part II: Topological, Geometrical and Generalized Shape Optimization,” Comput. Methods Appl. Mech. Eng., 89(1–3), pp. 309–336. [CrossRef]
Wang, M. Y. , Wang, X. , and Guo, D. , 2003, “ A Level Set Method for Structural Topology Optimization,” Comput. Methods Appl. Mech. Eng., 192(1–2), pp. 227–246. [CrossRef]
Allaire, G. , Jouve, F. , and Toader, A.-M. , 2004, “ Structural Optimization Using Sensitivity Analysis and a Level-Set Method,” J. Comput. Phys., 194(1), pp. 363–393. [CrossRef]
Xie, Y. M. , and Steven, G. P. , 1993, “ A Simple Evolutionary Procedure for Structural Optimization,” Comput. Struct., 49(5), pp. 885–896. [CrossRef]
Querin, O. M. , Steven, G. P. , and Xie, Y. M. , 1998, “ Evolutionary Structural Optimisation (ESO) Using a Bidirectional Algorithm,” Eng. Comput., 15(8), pp. 1031–1048. [CrossRef]
Yang, X. Y. , Xei, Y. M. , Steven, G. P. , and Querin, O. M. , 1999, “ Bidirectional Evolutionary Method for Stiffness Optimization,” AIAA J., 37(11), pp. 1483–1488. [CrossRef]
Abdi, M. , Wildman, R. , and Ashcroft, I. , 2013, “ Evolutionary Topology Optimization Using the Extended Finite Element Method and Isolines,” Eng. Optim., 46(5), pp. 628–647. [CrossRef]
Bedoya, J. , Meyer, C. A. , Timmins, L. H. , Moreno, M. R. , and Moore, J. E. , 2006, “ Effects of Stent Design Parameters on Normal Artery Wall Mechanics,” ASME J. Biomech. Eng., 128(5), pp. 757–765. [CrossRef]
Migliavacca, F. , Petrini, L. , Montanari, V. , Quagliana, I. , Auricchio, F. , and Dubini, G. , 2005, “ A Predictive Study of the Mechanical Behaviour of Coronary Stents by Computer Modelling,” Med. Eng. Phys., 27(1), pp. 13–18. [CrossRef] [PubMed]
Etave, F. , Finet, G. , Boivin, M. , Boyer, J. C. , Rioufol, G. , and Thollet, G. , 2001, “ Mechanical Properties of Coronary Stents Determined by Using Finite Element Analysis,” J. Biomech., 34(8), pp. 1065–1075. [CrossRef] [PubMed]
Petrini, L. , Migliavacca, F. , Auricchio, F. , and Dubini, G. , 2004, “ Numerical Investigation of the Intravascular Coronary Stent Flexibility,” J. Biomech., 37(4), pp. 495–501. [CrossRef] [PubMed]
Timmins, L. H. , Meyer, C. A. , Moreno, M. R. , and Moore, J. E. , 2008, “ Effects of Stent Design and Atherosclerotic Plaque Composition on Arterial Wall Biomechanics,” J. Endovasc. Ther., 15(6), pp. 643–654. [CrossRef] [PubMed]
Wu, W. , Yang, D.-Z. , Huang, Y.-Y. , Qi, M. , and Wang, W.-Q. , 2008, “ Topology Optimization of a Novel Stent Platform With Drug Reservoirs,” Med. Eng. Phys., 30(9), pp. 1177–1185. [CrossRef] [PubMed]
Guimarães, T. A. , Oliveira, S. A. G. , and Duarte, M. A. , 2008, “ Application of the Topological Optimization Technique to the Stents Cells Design for Angioplasty,” J. Braz. Soc. Mech. Sci. Eng., 30(3), pp. 261–268. [CrossRef]
Liu, Q. , 2014, “ Concept Design of Cardiovascular Stents Based on Load Identification,” J. Inst. Eng. Ser. C, 96(2), pp. 99–105. [CrossRef]
Bendsøe, M. P. , and Sigmund, O. , 1999, “ Material Interpolation Schemes in Topology Optimization,” Arch. Appl. Mech., 69(9–10), pp. 635–654.
Van Andel, C. J. , Pistecky, P. V. , and Borst, C. , 2003, “ Mechanical Properties of Porcine and Human Arteries: Implications for Coronary Anastomotic Connectors,” Ann. Thorac. Surg., 76(1), pp. 58–64; discussion 64–65. [CrossRef] [PubMed]
Tamai, H. , Igaki, K. , Tsuji, T. , Kyo, E. , Kosuga, K. , Kawashima, A. , Matsui, S. , Komori, H. , Motohara, S. , Uehata, H. , and Takeuchi, E. , 1999, “ A Biodegradable Poly-l-lactic Acid Coronary Stent in the Porcine Coronary Artery,” J. Interventional Cardiology, 12(6), pp. 443–450. [CrossRef]
Jamshidian, M. , Tehrany, E. A. , Imran, M. , Jacquot, M. , and Desobry, S. , 2010, “ Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies,” Compr. Rev. Food Sci. Food Saf., 9(5), pp. 552–571. [CrossRef]
Vroman, I. , and Tighzert, L. , 2009, “ Biodegradable Polymers,” Materials (Basel)., 2(2), pp. 307–344. [CrossRef]
Nishida, M. , Yamaguchi, M. , Todo, M. , Takayama, T. , Häggblad, H.-Å. , and Jonsén, P. , 2009, “ Evaluation of Dynamic Compressive Properties of PLA Polymer Blends Using Split Hopkinson Pressure Bar,” DYMAT 2009—9th International Conferences on the Mechanical and Physical Behaviour of Materials Under Dynamic Loading, Brussels, Belgium, pp. 909–915.
Lally, C. , Reid, A. J. , and Prendergast, P. J. , 2004, “ Elastic Behavior of Porcine Coronary Artery Tissue Under Uniaxial and Equibiaxial Tension,” Ann. Biomed. Eng., 32(10), pp. 1355–1364. [CrossRef] [PubMed]
Sigmund, O. , 2000, “ Topology Optimization: A Tool for the Tailoring of Structures and Materials,” Philos. Trans. R. Soc. A, 358(1765), pp. 211–227. [CrossRef]
Bendsoe, M. , and Sigmund, O. , 1999, “ Material Interpolation Schemes in Topology Optimization,” Arch. Appl. Mech., 69(9), pp. 635–654.
Kiziltas, G. , Kikuchi, N. , Volakis, J. , and Halloran, J. , 2004, “ Topology Optimization of Dielectric Substrates for Filters and Antennas Using SIMP,” Arch. Comput. Methods Eng., 11(4), pp. 355–388. [CrossRef]
Zuo, K. , Chen, L. , Zhang, Y. , and Yang, J. , 2007, “ Study of Key Algorithms in Topology Optimization,” Int. J. Adv. Manuf. Technol., 32, pp. 787–796. [CrossRef]
Ormiston, J. A. , and Serruys, P. W. S. , 2009, “ Bioabsorbable Coronary Stents,” Circulation, 2(3), pp. 255–260. [PubMed]
Martinez-Elbal, L. , Ruiz-Nodar, J. M. , Zueco, J. , Lopez-Minguez, J. R. , Moreu, J. , Calvo, I. , Ramirez, J. A. , Alonso, M. , Vazquez, N. , Lezaun, R. , and Rodriguez, C. , 2002, “ Direct Coronary Stenting Versus Stenting With Balloon Pre-Dilation: Immediate and Follow-Up Results of a Multicentre, Prospective, Randomized Study. The DISCO Trial. DIrect Stenting of COronary Arteries,” Eur. Heart J., 23(8), pp. 633–640. [CrossRef] [PubMed]
Yin, L. , and Ananthasuresh, G. K. , 2001, “ Topology Optimization of Compliant Mechanisms With Multiple Materials Using a Peak Function Material Interpolation Scheme,” Struct. Multidiscip. Optim., 23(1), pp. 49–62. [CrossRef]
Ramcharitar, S. , and Serruys, P. , 2008, “ Fully Biodegradable Coronary Stents,” Am. J. Cardiovasc. Drugs, 8(5), pp. 305–314. [CrossRef] [PubMed]
Mehdizadeh, A. , Ali, M. S. M. , Takahata, K. , Al-Sarawi, S. , and Abbott, D. , 2013, “ A Recoil Resilient Lumen Support, Design, Fabrication and Mechanical Evaluation,” J. Micromech. Microeng., 23(6), p. 065001.
Gamero, L. G. , Armentano, R. L. , and Levenson, J. , 2002, “ Arterial Wall Diameter and Viscoelasticity Variability,” IEEE Computers in Cardiology, Memphis, TN, Sept. 22–25, pp. 512–516.
Moore, J. J. , and Berry, J. L. , 2002, “ Fluid and Solid Mechanical Implications of Vascular Stenting,” Ann. Biomed. Eng., 30(4), pp. 498–508. [CrossRef] [PubMed]
Vaithilingam, J. , Kilsby, S. , Goodridge, R. D. , Christie, S. D. R. , Edmondson, S. , and Hague, R. J. M. , 2015, “ Functionalisation of Ti6Al4V Components Fabricated Using Selective Laser Melting With a Bioactive Compound,” Mater. Sci. Eng. C, 46, pp. 52–61. [CrossRef]
Vaithilingam, J. , Kilsby, S. , Goodridge, R. D. , Christie, S. D. R. , Edmondson, S. , and Hague, R. J. M. , 2014, “ Immobilisation of an Antibacterial Drug to Ti6Al4V Components Fabricated Using Selective Laser Melting,” Appl. Surf. Sci., 314, pp. 642–654. [CrossRef]
He, Y. , Wildman, R. D. , Tuck, C. J. , Christie, S. D. R. , and Edmondson, S. , 2016, “ An Investigation of the Behavior of Solvent Based Polycaprolactone Ink for Material Jetting,” Sci. Rep., 6, p. 20852. [CrossRef] [PubMed]
Gunasekera, D. H. A. T. , Kuek, S. , Hasanaj, D. , He, Y. , Tuck, C. , Croft, A. , and Wildman, R. D. , 2016, “ Three Dimensional Ink-Jet Printing of Biomaterials Using Ionic Liquids and Co-Solvents,” Faraday Discuss., 190, pp. 509–523. [CrossRef] [PubMed]
He, Y. , Tuck, C. J. , Prina, E. , Kilsby, S. , Christie, S. D. R. , Edmondson, S. , Hague, R. J. M. , Rose, F. R. A. J. , and Wildman, R. D. , 2016, “ A New Photocrosslinkable Polycaprolactone-Based Ink for Three-Dimensional Inkjet Printing,” J. Biomed. Mater. Res. B. Appl. Biomater, 00B(00).
Begines, B. , Hook, A. L. , Alexander, M. R. , Tuck, C. J. , and Wildman, R. D. , 2016, “ Development, Printability and Post-Curing Studies of Formulations of Materials Resistant to Microbial Attachment for Use in Inkjet Based 3D Printing,” Rapid Prototyp. J., 22(5), pp. 835–841.
Seyednejad, H. , Gawlitta, D. , Dhert, W. J. A. , van Nostrum, C. F. , Vermonden, T. , and Hennink, W. E. , 2011, “ Preparation and Characterization of a Three-Dimensional Printed Scaffold Based on a Functionalized Polyester for Bone Tissue Engineering Applications,” Acta Biomater., 7(5), pp. 1999–2006. [CrossRef] [PubMed]
Williams, J. M. , Adewunmi, A. , Schek, R. M. , Flanagan, C. L. , Krebsbach, P. H. , Feinberg, S. E. , Hollister, S. J. , and Das, S. , 2005, “ Bone Tissue Engineering Using Polycaprolactone Scaffolds Fabricated Via Selective Laser Sintering,” Biomaterials, 26(23), pp. 4817–4827. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 2

Proposed approach to design lesion-specific stents

Grahic Jump Location
Fig. 3

Artery models with plaque types used for the analyses (XZ plane cut view)

Grahic Jump Location
Fig. 4

Generic stent used for comparison

Grahic Jump Location
Fig. 5

Maximum radial displacement of plaque tip in the artery with five different meshes

Grahic Jump Location
Fig. 6

Relative position of cylinder and 40% stenotic artery before contact (artery sliced for illustration purpose)

Grahic Jump Location
Fig. 7

Contour plot showing radially inward nodal load (N) variation on one of the nine design spaces for stent topology optimization based on cylinder–artery contact with 50% calcified stenosis (a), discrete load contour plot unwrapped from cylindrical shape for illustration purpose showing axial (X) and circumferential (ϴ) directions (b)

Grahic Jump Location
Fig. 8

Stent topology optimization density distribution results for (a–c) 30%, (d–f) 40% and (g–i) 50% stenosis for calcified, cellular, and hypocellular plaque types, respectively (results of axial-stent-half unwrapped from cylindrical shape for illustration purpose)

Grahic Jump Location
Fig. 9

Stent topologies for (a–c) 30%, (d–f) 40% and (g–i) 50% for calcified, cellular, and hypocellular plaque types, respectively (results of axial-stent-half unwrapped from cylindrical shape for illustration purpose)

Grahic Jump Location
Fig. 10

Final lumen radial deformation with a generic stent (a–c) and optimized stents (d–f) for 30, 40 and 50% stenotic arteries, respectively, with different plaque types based on 11 equally distant points longitudinally along thickest part of plaque, relative to central axis (one half of the stenotic artery deformations illustrated)

Grahic Jump Location
Fig. 11

Postimplantation stenosis levels (calculated by lesion cross-sectional area) in the remodeled artery due to optimized and generic stents recoil



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In