American Stroke Association, 2014, “
Patient Education Handout,”
American Stroke Association,
Dallas, TX.
Stroke Foundation of New Zealand, 2013, “
Life After Stroke,” 2nd ed.,
Stroke Foundation of New Zealand,
Wellington, New Zealand.
Flansbjer,
U.-B.
,
Holmbäck,
A. M.
,
Downham,
D.
,
Patten,
C.
, and
Lexell,
J.
, 2005, “
Reliability of Gait Performance Tests in Men and Women With Hemiparesis After Stroke,” J. Rehabil. Med.,
37(2), pp. 75–82.
[CrossRef] [PubMed]
Preston,
E.
,
Ada,
L.
,
Dean,
C. M.
,
Stanton,
R.
, and
Waddington,
G.
, 2011, “
What is the Probability of Patients Who Are Nonambulatory After Stroke Regaining Independent Walking? A Systematic Review,” Int. J. Stroke,
6(6), pp. 531–540.
[CrossRef] [PubMed]
Mehrholz,
J.
,
Elsner,
B.
,
Werner,
C.
,
Kugler,
J.
, and
Pohl,
M.
, 2013, “
Electromechanical-Assisted Training for Walking After Stroke,” Cochrane Database Syst. Rev., (7), Art. No. CD006185.
Fuzaro,
A. C.
,
Guerreiro,
C. T.
,
Galetti,
F. C.
,
Jucá,
R. B. V. M.
, and
de Araujo,
J. E.
, 2012, “
Modified Constraint-Induced Movement Therapy and Modified Forced-Use Therapy for Stroke Patients Are Both Effective to Promote Balance and Gait Improvements,” Braz. J. Phys. Ther.,
16(2), pp. 157–165.
[CrossRef]
Zipp,
G. P.
, and
Winning,
S.
, 2012, “
Effects of Constraint-Induced Movement Therapy on Gait, Balance, and Functional Locomotor Mobility,” Pediatric Phys. Ther.,
24(1), pp. 64–68.
[CrossRef]
Jezernik,
S.
,
Colombo,
G.
, and
Morari,
M.
, 2004, “
Automatic Gait-Pattern Adaptation Algorithms for Rehabilitation With a 4-DOF Robotic Orthosis,” IEEE Trans. Rob. Autom.,
20(3), pp. 574–582.
[CrossRef]
Veneman,
J.
,
Kruidhof,
R.
,
Hekman,
E.
,
Ekkelenkamp,
R.
,
van Asseldonk,
E.
, and
van der Kooij,
H.
, 2007, “
Design and Evaluation of the Lopes Exoskeleton Robot for Interactive Gait Rehabilitation,” IEEE Trans. Neural Syst. Rehabil. Eng.,
15(3), pp. 379–386.
[CrossRef] [PubMed]
Yamawaki,
K.
,
Ariyasu,
R.
,
Kubota,
S.
,
Kawamoto,
H.
,
Nakata,
Y.
,
Kamibayashi,
K.
,
Sankai,
Y.
,
Eguchi,
K.
, and
Ochiai,
N.
, 2012, “
Application of Robot Suit Hal to Gait Rehabilitation of Stroke Patients: A Case Study,” Computers Helping People With Special Needs (Lecture Notes in Computer Science),
K. Miesenberger
,
A. Karshmer
,
P. Penaz
, and
W. Zagler
, eds., Vol.
7383,
Springer
Berlin Heidelberg, pp. 184–187.
Hesse,
S.
,
Sarkodie-Gyan,
T.
, and
Uhlenbrock,
D.
, 1999, “
Development of an Advanced Mechanised Gait Trainer, Controlling Movement of the Centre of Mass, for Restoring Gait in Non-Ambulant Subjects-Weiterentwicklung Eines Mechanisierten Gangtrainers mit Steuerung des Massenschwerpunktes zur Gangrehabilitation Rollstuhlpflichtiger Patienten,” Biomedizinische Technik/Biomedical Engineering,
44(7–8), pp. 194–201.
[CrossRef]
Freivogel,
S.
,
Schmalohr,
D.
, and
Mehrholz,
J.
, 2009, “
Improved Walking Ability and Reduced Therapeutic Stress With an Electromechanical Gait Device,” J. Rehabil. Med.,
41(9), pp. 734–739.
[CrossRef] [PubMed]
Schmidt,
H.
,
Hesse,
S.
,
Bernhardt,
R.
, and
Krüger,
J.
, 2005, “
Hapticwalker—A Novel Haptic Foot Device,” ACM Trans. Appl. Percept.,
2(2), pp. 166–180.
[CrossRef]
Hesse,
S.
,
Waldner,
A.
, and
Tomelleri,
C.
, 2010, “
Research Innovative Gait Robot for the Repetitive Practice of Floor Walking and Stair Climbing Up and Down in Stroke Patients,” J. Neuroeng. Rehabil.,
7(1), p. 30.
[CrossRef] [PubMed]
Tomelleri,
C.
,
Waldner,
A.
,
Werner,
C.
, and
Hesse,
S.
, 2011, “
Adaptive Locomotor Training on an End-Effector Gait Robot: Evaluation of the Ground Reaction Forces in Different Training Conditions,” 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), Zurich, Switzerland, June 29–July 1, pp. 1–5.
Shyu,
J. H.
,
Chen,
C. K.
,
Yu,
C. C.
, and
Luo,
Y. J.
, 2011, “
Research and Development of an Adjustable Elliptical Exerciser,” Advanced Design Technology (Advanced Materials Research), ADME 2011, Vol.
308,
Trans Tech Publications,
Pfaffikon, Switzerland, pp. 2078–2083.
Nelson,
C. A.
,
Burnfield,
J. M.
,
Shu,
Y.
,
Buster,
T. W.
,
Taylor,
A. P.
, and
Graham,
A.
, 2011, “
Modified Elliptical Machine Motor-Drive Design for Assistive Gait Rehabilitation,” ASME J. Med. Devices,
5(2), p. 021001.
[CrossRef]
Mehrholz,
J.
, and
Pohl,
M.
, 2012, “
Electromechanical-Assisted Gait Training After Stroke: A Systematic Review Comparing End-Effector and Exoskeleton Devices,” J. Rehabil. Med.,
44(3), pp. 193–199.
[CrossRef] [PubMed]
Cheng,
P.-Y.
, and
Lai,
P.-Y.
, 2013, “
Comparison of Exoskeleton Robots and End-Effector Robots on Training Methods and Gait Biomechanics,” Intelligent Robotics and Applications (Lecture Notes in Computer Science),
J. Lee
,
M. Lee
,
H. Liu
, and
J.-H. Ryu
, eds., Vol.
8102,
Springer
Berlin Heidelberg, pp. 258–266.
Hesse,
S.
,
Schattat,
N.
,
Mehrholz,
J.
, and
Werner,
C.
, 2013, “
Evidence of End-Effector Based Gait Machines in Gait Rehabilitation After CNS Lesion,” NeuroRehabilitation,
33(1), pp. 77–84.
[PubMed]
Dimyan,
M. A.
, and
Cohen,
L. G.
, 2011, “
Neuroplasticity in the Context of Motor Rehabilitation After Stroke,” Nat. Rev. Neurol.,
7(2), pp. 76–85.
[CrossRef] [PubMed]
Langhorne,
P.
, and
Pollock,
A.
, 2002, “
What are the Components of Effective Stroke Unit Care?,” Age Ageing,
31(5), pp. 365–371.
[CrossRef] [PubMed]
Indredavik,
B.
,
Bakke,
F.
,
Slørdahl,
S.
,
Rokseth,
R.
, and
Håheim,
L.
, 1999, “
Treatment in a Combined Acute and Rehabilitation Stroke Unit Which Aspects are Most Important?,” Stroke,
30(5), pp. 917–923.
[CrossRef] [PubMed]
Bernhardt,
J.
,
Thuy,
M. N.
,
Collier,
J. M.
, and
Legg,
L. A.
, 2009, “
Very Early Versus Delayed Mobilisation After Stroke,” Cochrane Database Syst. Rev., (1), Art. No.: CD006187.
Cumming,
T. B.
,
Collier,
J.
,
Thrift,
A. G.
, and
Bernhardt,
J.
, 2008, “
The Effect of Very Early Mobilization After Stroke on Psychological Well-Being,” Jof Rehabil. Med.,
40(8), pp. 609–614.
[CrossRef]
Langhorne,
P.
,
Stott,
D.
,
Knight,
A.
,
Bernhardt,
J.
,
Barer,
D.
, and
Watkins,
C.
, 2010, “
Very Early Rehabilitation or Intensive Telemetry After Stroke: A Pilot Randomised Trial,” Cerebrovasc. Dis.,
29(4), pp. 352–360.
[CrossRef] [PubMed]
Hornby,
T. G.
,
Campbell,
D. D.
,
Kahn,
J. H.
,
Demott,
T.
,
Moore,
J. L.
, and
Roth,
H. R.
, 2008, “
Enhanced Gait-Related Improvements After Therapist—Versus Robotic-Assisted Locomotor Training in Subjects With Chronic Stroke: A Randomized Controlled Study,” Stroke,
39(6), pp. 1786–1792.
[CrossRef] [PubMed]
Park,
E. S.
,
Park,
C. I.
, and
Kim,
J. Y.
, 2001, “
Comparison of Anterior and Posterior Walkers With Respect to Gait Parameters and Energy Expenditure of Children With Spastic Diplegic Cerebral Palsy,” Yonsei Med. J.,
42(2), pp. 180–184.
[CrossRef] [PubMed]
Bruggeman,
H.
,
Zosh,
W.
, and
Warren,
W.
, 2007, “
Optic Flow Drives Human Visuo-Locomotor Adaptation,” Current Biol.,
17(23), pp. 2035–2040.
[CrossRef]
Nelson,
C.
,
Stolle,
C.
,
Burnfield,
J.
, and
Buster,
T.
, 2015, “
Synthesis of a Rehabilitation Mechanism Replicating Normal Gait,” 14th IFToMM World Congress, Taipei, Taiwan, Oct. 25–30, pp. 71–78.
Ji,
Z.
, and
Manna,
Y.
, 2008, “
Synthesis of a Pattern Generation Mechanism for Gait Rehabilitation,”ASME J. Med. Dev.,
2(3), p. 031004.
[CrossRef]
Perry,
J.
, and
Burnfield,
M. B.
, 2010, Gait Analysis: Normal and Pathological Function, 2nd ed.,
Slack Incorporated,
Thorofare, NJ.
Ferrari,
A.
,
Benedetti,
M. G.
,
Pavan,
E.
,
Frigo,
C.
,
Bettinelli,
D.
,
Rabuffetti,
M.
,
Crenna,
P.
, and
Leardini,
A.
, 2008, “
Quantitative Comparison of Five Current Protocols in Gait Analysis,” Gait Posture,
28(2), pp. 207–216.
[CrossRef] [PubMed]