Research Papers

Statistical Shape Modeling for Cavopulmonary Assist Device Development: Variability of Vascular Graft Geometry and Implications for Hemodynamics

[+] Author and Article Information
Jan L. Bruse

Centre for Cardiovascular Imaging,
Great Ormond Street Hospital for Children,
UCL Institute of Cardiovascular Science,
Level 6, Nurses Home, Great Ormond Street,
London WC1N 3JH, UK
e-mail: jan.bruse.12@ucl.ac.uk

Giuliano Giusti

Centre for Cardiovascular Imaging,
Great Ormond Street Hospital for Children,
UCL Institute of Cardiovascular Science,
Level 6, Nurses Home, Great Ormond Street,
London WC1N 3JH, UK
e-mail: giusti.giul@gmail.com

Catriona Baker

Centre for Cardiovascular Imaging,
Great Ormond Street Hospital for Children,
UCL Institute of Cardiovascular Science,
Level 6, Nurses Home, Great Ormond Street,
London WC1N 3JH, UK
e-mail: catriona.baker@ucl.ac.uk

Elena Cervi

Centre for Cardiovascular Imaging,
Great Ormond Street Hospital for Children,
UCL Institute of Cardiovascular Science,
Level 6, Nurses Home, Great Ormond Street,
London WC1N 3JH, UK
e-mail: Elena.Cervi@gosh.nhs.uk

Tain-Yen Hsia

Centre for Cardiovascular Imaging,
Great Ormond Street Hospital for Children,
UCL Institute of Cardiovascular Science,
Level 7, Nurses Home, Great Ormond Street,
London WC1N 3JH, UK
e-mail: tyhsia@virginmedia.com

Andrew M. Taylor

Centre for Cardiovascular Imaging,
Great Ormond Street Hospital for Children,
UCL Institute of Cardiovascular Science,
Level 7, Nurses Home, Great Ormond Street,
London WC1N 3JH, UK
e-mail: a.taylor76@ucl.ac.uk

Silvia Schievano

Centre for Cardiovascular Imaging,
Great Ormond Street Hospital for Children,
UCL Institute of Cardiovascular Science,
Level 6, Nurses Home, Great Ormond Street,
London WC1N 3JH, UK
e-mail: s.schievano@ucl.ac.uk

Manuscript received July 31, 2016; final manuscript received January 23, 2017; published online May 3, 2017. Assoc. Editor: Marc Horner.

J. Med. Devices 11(2), 021011 (May 03, 2017) (11 pages) Paper No: MED-16-1290; doi: 10.1115/1.4035865 History: Received July 31, 2016; Revised January 23, 2017

Patients born with a single functional ventricle typically undergo three-staged surgical palliation in the first years of life, with the last stage realizing a cross-like total cavopulmonary connection (TCPC) of superior and inferior vena cavas (SVC and IVC) with both left and right pulmonary arteries (LPA and RPA), allowing all deoxygenated blood to flow passively back to the lungs (Fontan circulation). Even though within the past decades more patients survive into adulthood, the connection comes at the prize of deficiencies such as chronic systemic venous hypertension and low cardiac output (CO), which ultimately may lead to Fontan failure. Many studies have suggested that the TCPC’s inherent insufficiencies might be addressed by adding a cavopulmonary assist device (CPAD) to provide the necessary pressure boost. While many device concepts are being explored, few take into account the complex cardiac anatomy typically associated with TCPCs. In this study, we focus on the extra cardiac conduit (ECC) vascular graft connecting IVC and pulmonary arteries (PAs) as one possible landing zone for a CPAD and describe its geometric variability in a cohort of 18 patients that had their TCPC realized with a 20 mm vascular graft. We report traditional morphometric parameters and apply statistical shape modeling (SSM) to determine the main contributors of graft shape variability. Such information may prove useful when designing CPADs that are adapted to the challenging anatomical boundaries in Fontan patients. We further compute the anatomical mean 3D graft shape (template graft) as a representative of key shape features of our cohort and prove this template graft to be a significantly better approximation of population and individual patient’s hemodynamics than a commonly used simplified tube geometry. We therefore conclude that statistical shape modeling results can provide better models of geometric and hemodynamic boundary conditions associated with complex cardiac anatomy, which in turn may impact on improved cardiac device development.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Gewillig, M. , 2005, “ The Fontan Circulation,” Heart, 91(6), pp. 839–846. [CrossRef] [PubMed]
Gersony, W. M. , 2008, “ Fontan Operation After 3 Decades,” Circulation, 117(1), pp. 13–15. [CrossRef] [PubMed]
Jaquiss, R. D. B. , and Aziz, H. , 2016, “ Is Four Stage Management the Future of Univentricular Hearts? Destination Therapy in the Young,” Semin. Thorac. Cardiovasc. Surg.: Pediatr. Card. Surg. Annu., 19(1), pp. 50–54. [CrossRef] [PubMed]
McRae, M. E. R. , 2013, “ Long-Term Issues After the Fontan Procedure,” AACN Adv. Crit. Care, 24(3), pp. 264–282. [CrossRef] [PubMed]
de Leval, M. R. , 1998, “ The Fontan Circulation: What Have We Learned? What to Expect?,” Pediatr. Cardiol., 19(4), pp. 316–320. [CrossRef] [PubMed]
Rodefeld, M. D. , Boyd, J. H. , Myers, C. D. , LaLone, B. J. , Bezruczko, A. J. , Potter, A. W. , and Brown, J. W. , 2003, “ Cavopulmonary Assist: Circulatory Support for the Univentricular Fontan Circulation,” Ann. Thorac. Surg., 76(6), pp. 1911–1916. [CrossRef] [PubMed]
Delorme, Y. , Anupindi, K. , Kerlo, A. E. , Shetty, D. , Rodefeld, M. , Chen, J. , and Frankel, S. , 2013, “ Large Eddy Simulation of Powered Fontan Hemodynamics,” J. Biomech., 46(2), pp. 408–422. [CrossRef] [PubMed]
Haggerty, C. M. , Fynn-Thompson, F. , McElhinney, D. B. , Valente, A. M. , Saikrishnan, N. , del Nido, P. J. , and Yoganathan, A. P. , 2012, “ Experimental and Numeric Investigation of Impella Pumps as Cavopulmonary Assistance for a Failing Fontan,” J. Thorac. Cardiovasc. Surg., 144(3), pp. 563–569. [CrossRef] [PubMed]
Throckmorton, A. L. , Kapadia, J. Y. , Chopski, S. G. , Bhavsar, S. S. , Moskowitz, W. B. , Gullquist, S. D. , Gangemi, J. J. , Haggerty, C. M. , and Yoganathan, A. P. , 2010, “ Numerical, Hydraulic, and Hemolytic Evaluation of an Intravascular Axial Flow Blood Pump to Mechanically Support Fontan Patients,” Ann. Biomed. Eng., 39(1), pp. 324–336. [CrossRef] [PubMed]
Throckmorton, A. L. , Lopez-Isaza, S. , and Moskowitz, W. , 2013, “ Dual-Pump Support in the Inferior and Superior Vena Cavae of a Patient-Specific Fontan Physiology,” Artif. Organs, 37(6), pp. 513–522. [CrossRef] [PubMed]
Lacour-Gayet, F. G. , Lanning, C. J. , Stoica, S. , Wang, R. , Rech, B. A. , Goldberg, S. , and Shandas, R. , 2009, “ An Artificial Right Ventricle for Failing Fontan: In Vitro and Computational Study,” Ann. Thorac. Surg., 88(1), pp. 170–176. [CrossRef] [PubMed]
Throckmorton, A. L. , Ballman, K. K. , Myers, C. D. , Frankel, S. H. , Brown, J. W. , and Rodefeld, M. D. , 2008, “ Performance of a 3-Bladed Propeller Pump to Provide Cavopulmonary Assist in the Failing Fontan Circulation,” Ann. Thorac. Surg., 86(4), pp. 1343–1347. [CrossRef] [PubMed]
Rodefeld, M. D. , Coats, B. , Fisher, T. , Giridharan, G. A. , Chen, J. , Brown, J. W. , and Frankel, S. H. , 2010, “ Cavopulmonary Assist for the Univentricular Fontan Circulation: von Kármán Viscous Impeller Pump,” J. Thorac. Cardiovasc. Surg., 140(3), pp. 529–536. [CrossRef] [PubMed]
Kennington, J. R. , Frankel, S. H. , Chen, J. , Koenig, S. C. , Sobieski, M. A. , Giridharan, G. A. , and Rodefeld, M. D. , 2011, “ Design Optimization and Performance Studies of an Adult Scale Viscous Impeller Pump for Powered Fontan in an Idealized Total Cavopulmonary Connection,” Cardiovasc. Eng. Technol., 2(4), pp. 237–243. [CrossRef]
Giridharan, G. A. , Koenig, S. C. , Kennington, J. , Sobieski, M. A. , Chen, J. , Frankel, S. H. , and Rodefeld, M. D. , 2013, “ Performance Evaluation of a Pediatric Viscous Impeller Pump for Fontan Cavopulmonary Assist,” J. Thorac. Cardiovasc. Surg., 145(1), pp. 249–257. [CrossRef] [PubMed]
Valdovinos, J. , Shkolyar, E. , Carman, G. P. , and Levi, D. S. , 2014, “ In Vitro Evaluation of an External Compression Device for Fontan Mechanical Assistance,” Artif. Organs, 38(3), pp. 199–207. [CrossRef] [PubMed]
Yamada, A. , Shiraishi, Y. , Miura, H. , Yambe, T. , Omran, M. H. , Shiga, T. , Tsuboko, Y. , Homma, D. , and Yamagishi, M. , 2013, “ Peristaltic Hemodynamics of a New Pediatric Circulatory Assist System for Fontan Circulation Using Shape Memory Alloy Fibers,” 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, July 3–7, pp. 683–686.
KrishnankuttyRema, R. , Dasi, L. P. , Pekkan, K. , Sundareswaran, K. , Fogel, M. , Sharma, S. , Kanter, K. , Spray, T. , and Yoganathan, A. P. , 2008, “ Quantitative Analysis of Extracardiac Versus Intraatrial Fontan Anatomic Geometries,” Ann. Thorac. Surg., 85(3), pp. 810–817. [CrossRef] [PubMed]
Giridharan, G. A. , Ising, M. , Sobieski, M. A. , Koenig, S. C. , Chen, J. , Frankel, S. , and Rodefeld, M. D. , 2014, “ Cavopulmonary Assist for the Failing Fontan Circulation: Impact of Ventricular Function on Mechanical Support Strategy,” ASAIO J., 60(6), pp. 707–715. [CrossRef] [PubMed]
Dasi, L. P. , Sundareswaran, K. S. , Sherwin, C. , de Zelicourt, D. , Kanter, K. , Fogel, M. A. , and Yoganathan, A. P. , 2010, “ Larger Aortic Reconstruction Corresponds to Diminished Left Pulmonary Artery Size in Patients With Single-Ventricle Physiology,” J. Thorac. Cardiovasc. Surg., 139(3), pp. 557–561. [CrossRef] [PubMed]
Young, A. A. , and Frangi, A. F. , 2009, “ Computational Cardiac Atlases: From Patient to Population and Back,” Exp. Physiol., 94(5), pp. 578–596. [CrossRef] [PubMed]
Farrar, G. , Suinesiaputra, A. , Gilbert, K. , Perry, J. C. , Hegde, S. , Marsden, A. , Young, A. A. , Omens, J. H. , and McCulloch, A. D. , 2016, “ Atlas-Based Ventricular Shape Analysis for Understanding Congenital Heart Disease,” Prog. Pediatr. Cardiol., 43, pp. 61–69. [CrossRef] [PubMed]
Yushkevich, P. A. , Piven, J. , Hazlett, H. C. , Smith, R. G. , Ho, S. , Gee, J. C. , and Gerig, G. , 2006, “ User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability,” NeuroImage, 31(3), pp. 1116–1128. [CrossRef] [PubMed]
Antiga, L. , Piccinelli, M. , Botti, L. , Ene-Iordache, B. , Remuzzi, A. , and Steinman, D. A. , 2008, “ An Image-Based Modeling Framework for Patient-Specific Computational Hemodynamics,” Med. Biol. Eng. Comput., 46(11), pp. 1097–1112. [CrossRef] [PubMed]
Piccinelli, M. , Veneziani, A. , Steinman, D. A. , Remuzzi, A. , and Antiga, L. , 2009, “ A Framework for Geometric Analysis of Vascular Structures: Application to Cerebral Aneurysms,” IEEE Trans. Med. Imaging, 28(8), pp. 1141–1155. [CrossRef] [PubMed]
Antiga, L. , and Steinman, D. A. , 2004, “ Robust and Objective Decomposition and Mapping of Bifurcating Vessels,” IEEE Trans. Med. Imaging, 23(6), pp. 704–713. [CrossRef] [PubMed]
Durrleman, S. , Prastawa, M. , Charon, N. , Korenberg, J. R. , Joshi, S. , Gerig, G. , and Trouvé, A. , 2014, “ Morphometry of Anatomical Shape Complexes With Dense Deformations and Sparse Parameters,” NeuroImage, 101, pp. 35–49. [CrossRef] [PubMed]
Durrleman, S. , Pennec, X. , Trouvé, A. , and Ayache, N. , 2009, “ Statistical Models of Sets of Curves and Surfaces Based on Currents,” Med. Image Anal., 13(5), pp. 793–808. [CrossRef] [PubMed]
Bruse, J. L. , Cervi, E. , McLeod, K. , Biglino, G. , Sermesant, M. , Pennec, X. , Taylor, A. M. , Schievano, S. , and Hsia, T.-Y. , 2016, “ Looks do Matter! Aortic Arch Shape Following Hypoplastic Left Heart Syndrome Palliation Correlates With Cavopulmonary Outcomes,” Ann. Thorac. Surg., 103(2), pp. 645–654. [CrossRef] [PubMed]
Beg, M. F. , Miller, M. I. , Trouvé, A. , and Younes, L. , 2005, “ Computing Large Deformation Metric Mappings Via Geodesic Flows of Diffeomorphisms,” Int. J. Comput. Vision, 61(2), pp. 139–157. [CrossRef]
Bruse, J. L. , McLeod, K. , Biglino, G. , Ntsinjana, H. N. , Capelli, C. , Hsia, T.-Y. , Sermesant, M. , Pennec, X. , Taylor, A. M. , and Schievano, S. , 2016, “ A Statistical Shape Modelling Framework to Extract 3D Shape Biomarkers From Medical Imaging Data: Assessing Arch Morphology of Repaired Coarctation of the Aorta,” BMC Med. Imaging, 16(1), p. 40. [CrossRef] [PubMed]
Besl, P. J. , and McKay, N. D. , 1992, “ A Method for Registration of 3-D Shapes,” IEEE Trans. Pattern Anal. Mach. Intell., 14(2), pp. 239–256. [CrossRef]
Gower, J. C. , 1975, “ Generalized Procrustes Analysis,” Psychometrika, 40(1), pp. 33–51. [CrossRef]
Jolliffe, I. T. , 2002, Principal Component Analysis, Springer, New York.
Mansi, T. , Durrleman, S. , Bernhardt, B. , Sermesant, M. , Delingette, H. , Voigt, I. , Lurz, P. , Taylor, A. M. , Blanc, J. , Boudjemline, Y. , Pennec, X. , and Ayache, N. , 2009, “ A Statistical Model of Right Ventricle in Tetralogy of Fallot for Prediction of Remodelling and Therapy Planning,” Medical Image Computing and Computer-Assisted Intervention–MICCAI 2009, G.-Z. Yang , D. Hawkes , D. Rueckert , A. Noble , and C. Taylor , eds., Springer, Berlin, pp. 214–221.
Mansi, T. , Voigt, I. , Leonardi, B. , Pennec, X. , Durrleman, S. , Sermesant, M. , Delingette, H. , Taylor, A. M. , Boudjemline, Y. , Pongiglione, G. , and Ayache, N. , 2011, “ A Statistical Model for Quantification and Prediction of Cardiac Remodelling: Application to Tetralogy of Fallot,” IEEE Trans. Med. Imaging, 30(9), pp. 1605–1616. [CrossRef] [PubMed]
Ahrens, J. , Geveci, B. , and Law, C. , 2005, “ ParaView: An End-User Tool for Large-Data Visualization,” Visualization Handbook, Elsevier, Burlington, MA, p. 717.
Rogers, L. S. , Glatz, A. C. , Ravishankar, C. , Spray, T. L. , Nicolson, S. C. , Rychik, J. , Rush, C. H. , Gaynor, J. W. , and Goldberg, D. J. , 2012, “ 18 Years of the Fontan Operation at a Single Institution: Results From 771 Consecutive Patients,” J. Am. Coll. Cardiol., 60(11), pp. 1018–1025. [CrossRef] [PubMed]
Lee, C. , Lee, C.-H. , Hwang, S. W. , Lim, H. G. , Kim, S.-J. , Lee, J. Y. , Shim, W.-S. , and Kim, W.-H. , 2007, “ Midterm Follow-Up of the Status of Gore-Tex Graft After Extracardiac Conduit Fontan Procedure,” Eur. J. Cardiothorac. Surg., 31(6), pp. 1008–1012. [CrossRef] [PubMed]
Ochiai, Y. , Imoto, Y. , Sakamoto, M. , Kajiwara, T. , Sese, A. , Watanabe, M. , Ohno, T. , and Joo, K. , 2009, “ Mid-Term Follow-Up of the Status of Gore-Tex Graft After Extracardiac Conduit Fontan Procedure,” Eur. J. Cardiothorac. Surg., 36(1), pp. 63–68. [CrossRef] [PubMed]
McGregor, R. , Szczerba, D. , von Siebenthal, M. , Muralidhar, K. , and Székely, G. , 2008, “ Exploring the Use of Proper Orthogonal Decomposition for Enhancing Blood Flow Images Via Computational Fluid Dynamics,” Medical Image Computing and Computer-Assisted Intervention–MICCAI 2008, D. Metaxas , L. Axel , G. Fichtinger , and G. Székely , eds., Springer, Berlin, pp. 782–789.
Guibert, R. , McLeod, K. , Caiazzo, A. , Mansi, T. , Fernández, M. A. , Sermesant, M. , Pennec, X. , Vignon-Clementel, I. E. , Boudjemline, Y. , and Gerbeau, J.-F. , 2014, “ Group-Wise Construction of Reduced Models for Understanding and Characterization of Pulmonary Blood Flows From Medical Images,” Med. Image Anal., 18(1), pp. 63–82. [CrossRef] [PubMed]
Beier, S. , Ormiston, J. , Webster, M. , Cater, J. , Norris, S. , Medrano-Gracia, P. , Young, A. , and Cowan, B. , 2016, “ Impact of Bifurcation Angle and Other Anatomical Characteristics on Blood Flow–A Computational Study of Non-Stented and Stented Coronary Arteries,” J. Biomech., 49(9), pp. 1570–1582. [CrossRef] [PubMed]
Haggerty, C. M. , Restrepo, M. , Tang, E. , de Zélicourt, D. A. , Sundareswaran, K. S. , Mirabella, L. , Bethel, J. , Whitehead, K. K. , Fogel, M. A. , and Yoganathan, A. P. , 2014, “ Fontan Hemodynamics From 100 Patient-Specific Cardiac Magnetic Resonance Studies: A Computational Fluid Dynamics Analysis,” J. Thorac. Cardiovasc. Surg., 148(4), pp. 1481–1489. [CrossRef] [PubMed]
Zuluaga, M. A. , Burgos, N. , Mendelson, A. F. , Taylor, A. M. , and Ourselin, S. , 2015, “ Voxelwise Atlas Rating for Computer Assisted Diagnosis: Application to Congenital Heart Diseases of the Great Arteries,” Med. Image Anal., 26(1), pp. 185–194. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 3

All 18 ECC patient graft models reconstructed from CMR data used for template computation and CFD analyses

Grahic Jump Location
Fig. 2

Three-dimensional TCPC models were segmented and reconstructed from CMR data and cut consistently at the height of hepatic vein/IVC junction and PA anastomosis in order to obtain graft models represented by surface meshes

Grahic Jump Location
Fig. 1

Commonly found generic simplification of a TCPC approximated as an orthogonal cross. Deoxygenated blood enters from IVC and SVC and flows into LPA and RPA (a). Example TCPCs derived from CMR data of five patients who underwent Fontan palliation with ECC vascular graft. Connection configuration differs considerably from a simple cross and vessel anatomy (including the ECC graft) differs substantially from straight tubes (b).

Grahic Jump Location
Fig. 9

Individual, volume-rendered pressure maps for all 18 patients showing higher pressure in the area of hepatic vein/IVC junction and the outward bend toward the PA anastomosis (a). The computed template showed a better approximation of the patient pressure maps than the simple tube and had a pressure drop closer to the average pressure drop of the population (b).

Grahic Jump Location
Fig. 10

Deviations between template pressure drop and individual patient’s pressure drops showed to be significantly lower (** denotes significance level p < 0.01) than those of the tube. The tube thereby strongly underestimated patient pressure drops (by 65–75%) and is thus not a suitable approximation of patient hemodynamics. Error bars denote ±1 SD.

Grahic Jump Location
Fig. 7

Scree plot describing how much of the total shape variability is explained by each PCA shape mode (individual explained shape variability in dashed line; cumulated explained shape variability in solid line). Ten shape modes described 90% of the total shape variability, with the first shape mode accounting for 29.5%.

Grahic Jump Location
Fig. 8

First three PCA shape modes, visualized as deformation of the computed template graft along each mode direction from −3 to +3 standard deviations (SD). Mode 1 accounted for most of the shape variability and mainly described graft shape changes associated with difference in graft length (a). Shape mode 2 accounted for shape variability introduced by differences in curvature/bending of the graft (b) and mode 3 visualized small differences in graft diameter (c). Those three shape parameters need to be taken into account when designing a CPAD to fit into the ECC graft.

Grahic Jump Location
Fig. 4

Overview of CFD boundary conditions. Inflow and outlet pressure were set constant; blood was modeled as a Newtonian fluid.

Grahic Jump Location
Fig. 5

Computed template graft (i.e., mean 3D graft shape) from different view angles and key geometric parameters. The template comprised graft shape features characteristic for our patient cohort such as an overall c-shaped graft with slimmer midsection and slight flaring toward the PA anastomosis site.

Grahic Jump Location
Fig. 6

Surface distances between nine-fold cross validated template shapes and full template shape (overlaid in gray). Following cross validation, the full template shape was not overly affected by removing subjects from the analysis.




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In