0
Research Papers

Computational Modeling of the Mechanical Performance of a Magnesium Stent Undergoing Uniform and Pitting Corrosion in a Remodeling Artery

[+] Author and Article Information
Enda L. Boland

Biomechanics Research Centre (BMEC),
Biomedical Engineering,
College of Engineering and Informatics,
National University of Ireland Galway,
Galway H91 HX31, Ireland
e-mail: e.boland1@nuigalway.ie

James A. Grogan

Biomechanics Research Centre (BMEC),
Biomedical Engineering,
College of Engineering and Informatics,
National University of Ireland Galway,
Galway H91 HX31, Ireland

Peter E. McHugh

Professor
Biomechanics Research Centre (BMEC),
Biomedical Engineering,
College of Engineering and Informatics,
National University of Ireland Galway,
Galway H91 HX31, Ireland
e-mail: peter.mchugh@nuigalway.ie

1Corresponding author.

Manuscript received September 12, 2016; final manuscript received January 27, 2017; published online May 3, 2017. Assoc. Editor: Xiaoming He.

J. Med. Devices 11(2), 021013 (May 03, 2017) (10 pages) Paper No: MED-16-1318; doi: 10.1115/1.4035895 History: Received September 12, 2016; Revised January 27, 2017

Coronary stents made from degradable biomaterials such as magnesium alloy are an emerging technology in the treatment of coronary artery disease. Biodegradable stents provide mechanical support to the artery during the initial scaffolding period after which the artery will have remodeled. The subsequent resorption of the stent biomaterial by the body has potential to reduce the risk associated with long-term placement of these devices, such as in-stent restenosis, late stent thrombosis, and fatigue fracture. Computational modeling such as finite-element analysis has proven to be an extremely useful tool in the continued design and development of these medical devices. What is lacking in computational modeling literature is the representation of the active response of the arterial tissue in the weeks and months following stent implantation, i.e., neointimal remodeling. The phenomenon of neointimal remodeling is particularly interesting and significant in the case of biodegradable stents, when both stent degradation and neointimal remodeling can occur simultaneously, presenting the possibility of a mechanical interaction and transfer of load between the degrading stent and the remodeling artery. In this paper, a computational modeling framework is developed that combines magnesium alloy degradation and neointimal remodeling, which is capable of simulating both uniform (best case) and localized pitting (realistic) stent corrosion in a remodeling artery. The framework is used to evaluate the effects of the neointima on the mechanics of the stent, when the stent is undergoing uniform or pitting corrosion, and to assess the effects of the neointimal formation rate relative to the overall stent degradation rate (for both uniform and pitting conditions).

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Waksman, R. , Prati, F. , Bruining, N. , Haude, M. , Böse, D. , Kitabata, H. , Erne, P. , Verheye, S. , Degen, H. , Vermeersch, P. , Di Vito, L. , Koolen, J. , and Erbel, R. , 2013, “ Serial Observation of Drug-Eluting Absorbable Metal Scaffold: Multi-Imaging Modality Assessment,” Circ. Cardiovasc. Interventions, 6(6), pp. 644–653. [CrossRef]
Hermawan, H. , Dubé, D. , and Mantovani, D. , 2010, “ Developments in Metallic Biodegradable Stents,” Acta Biomater., 6(5), pp. 1693–1697. [CrossRef] [PubMed]
Gogas, B. , Farooq, V. , Onuma, Y. , and Serruys, P. , 2012, “ The Absorb Bioresorbable Vascular Scaffold: An Evolution or Revolution in Interventional Cardiology,” Hell. J. Cardiol., 53(4), pp. 301–309.
Patel, N. , and Banning, A. P. , 2013, “ Bioabsorbable Scaffolds for the Treatment of Obstructive Coronary Artery Disease: The Next Revolution in Coronary Intervention?” Heart, 99(17), pp. 1236–1243. [CrossRef] [PubMed]
Erbel, R. , Di Mario, C. , Bartunek, J. , Bonnier, J. , de Bruyne, B. , Eberli, F. R. , Erne, P. , Haude, M. , Heublein, B. , Horrigan, M. , Ilsley, C. , Böse, D. , Koolen, J. , Lüscher, T. F. , Weissman, N. , and Waksman, R. , 2007, “ Temporary Scaffolding of Coronary Arteries With Bioabsorbable Magnesium Stents: A Prospective, Non-Randomised Multicentre Trial,” Lancet, 369(9576), pp. 1869–1875. [CrossRef] [PubMed]
Haude, M. , Erbel, R. , Erne, P. , Verheye, S. , Degen, H. , Bose, D. , Vermeersch, P. , Wijnbergen, I. , Weissman, N. , Prati, F. , Waksman, R. , and Koolen, J. , 2013, “ Safety and Performance of the Drug-Eluting Metal Scaffold (Dreams) in Patients With De-Novo Coronary Lesions: 12 Month Results of the Prospective, Multicentre, First-in-Man Biosolve-1 Trial,” Lancet, 381(9869), pp. 836–844. [CrossRef] [PubMed]
Haude, M. , Ince, H. , Abizaid, A. , Toelg, R. , Lemos, P. A. , Von Birgelen, C. , Christiansen, E. H. , Wijns, W. , Neumann, F. J. , Kaiser, C. , Eeckhout, E. , Lim, S. T. , Escaned, J. , Garcia-Garcia, H. M. , and Waksman, R. , 2016, “ Safety and Performance of the Second-Generation Drug-Eluting Absorbable Metal Scaffold in Patients With De-Novo Coronary Artery Lesions (Biosolve-II): 6 Month Results of a Prospective, Multicentre, Non-Randomised, First-in-Man Trial,” Lancet, 387(10013), pp. 31–39. [CrossRef] [PubMed]
Mitra, A. K. , and Agrawal, D. K. , 2006, “ In Stent Restenosis: Bane of the Stent Era,” J. Clin. Pathol., 59(3), pp. 232–239. [CrossRef] [PubMed]
Ong, A. T. L. , McFadden, E. P. , Regar, E. , de Jaegere, P. P. T. , van Domburg, R. T. , and Serruys, P. W. , 2005, “ Late Angiographic Stent Thrombosis (Last) Events With Drug-Eluting Stents,” J. Am. Coll. Cardiol., 45(12), pp. 2088–2092. [CrossRef] [PubMed]
Zartner, P. , Cesnjevar, R. , Singer, H. , and Weyand, M. , 2005, “ First Successful Implantation of a Biodegradable Metal Stent Into the Left Pulmonary Artery of a Preterm Baby,” Catheterization Cardiovasc. Interventions, 66(4), pp. 590–594. [CrossRef]
Conway, C. , Sharif, F. , McGarry, J. P. , and McHugh, P. E. , 2012, “ A Computational Test-Bed to Assess Coronary Stent Implantation Mechanics Using a Population-Specific Approach,” Cardiovasc. Eng. Technol., 3(4), pp. 374–387. [CrossRef]
Conway, C. , McGarry, J. P. , and McHugh, P. E. , 2014, “ Modelling of Atherosclerotic Plaque for Use in a Computational Test-Bed for Stent Angioplasty,” Ann. Biomed. Eng., 42(12), pp. 2425–2439. [CrossRef] [PubMed]
Grogan, J. A. , Leen, S. B. , and McHugh, P. E. , 2012, “ Comparing Coronary Stent Material Performance on a Common Geometric Platform Through Simulated Bench Testing,” J. Mech. Behav. Biomed. Mater., 12, pp. 129–138. [CrossRef] [PubMed]
Gervaso, F. , Capelli, C. , Petrini, L. , Lattanzio, S. , Di Virgilio, L. , and Migliavacca, F. , 2008, “ On the Effects of Different Strategies in Modelling Balloon-Expandable Stenting by Means of Finite Element Method,” J. Biomech., 41(6), pp. 1206–1212. [CrossRef] [PubMed]
Gijsen, F. J. H. , Migliavacca, F. , Schievano, S. , Socci, L. , Petrini, L. , Thury, A. , Wentzel, J. J. , van der Steen, A. F. W. , Serruys, P. W. S. , and Dubini, G. , 2008, “ Simulation of Stent Deployment in a Realistic Human Coronary Artery,” Biomed. Eng. Online, 7(1), p. 23. [CrossRef] [PubMed]
Sweeney, C. A. , McHugh, P. E. , McGarry, J. P. , and Leen, S. B. , 2012, “ Micromechanical Methodology for Fatigue in Cardiovascular Stents,” Int. J. Fatigue, 44, pp. 202–216. [CrossRef]
Zunino, P. , D'Angelo, C. , Petrini, L. , Vergara, C. , Capelli, C. , and Migliavacca, F. , 2009, “ Numerical Simulation of Drug Eluting Coronary Stents: Mechanics, Fluid Dynamics and Drug Release,” Comput. Methods Appl. Mech. Eng., 198(45–46), pp. 3633–3644. [CrossRef]
Martin, D. , and Boyle, F. J. , 2011, “ Computational Structural Modelling of Coronary Stent Deployment: A Review,” Comput. Methods Biomech. Biomed. Eng., 14(4), pp. 331–348. [CrossRef]
Morlacchi, S. , and Migliavacca, F. , 2013, “ Modeling Stented Coronary Arteries: Where We Are, Where to Go,” Ann. Biomed. Eng., 41(7), pp. 1428–1444. [CrossRef] [PubMed]
McHugh, P. , Barakat, A. , and McGinty, S. , 2016, “ Medical Stents: State of the Art and Future Directions,” Ann. Biomed. Eng., 44(2), pp. 274–275. [CrossRef] [PubMed]
Grogan, J. A. , O'Brien, B. J. , Leen, S. B. , and McHugh, P. E. , 2011, “ A Corrosion Model for Bioabsorbable Metallic Stents,” Acta Biomater., 7(9), pp. 3523–3533. [CrossRef] [PubMed]
Grogan, J. A. , Leen, S. B. , and McHugh, P. E. , 2013, “ Optimizing the Design of a Bioabsorbable Metal Stent Using Computer Simulation Methods,” Biomaterials, 34(33), pp. 8049–8060. [CrossRef] [PubMed]
Soares, J. S. , Moore, J. E. J. , and Rajagopal, K. R. , 2008, “ Constitutive Framework for Biodegradable Polymers With Applications to Biodegradable Stents,” ASAIO J., 54(3), pp. 295–301. [CrossRef] [PubMed]
Bobel, A. C. , Petisco, S. , Sarasua, J. R. , Wang, W. , and McHugh, P. E. , 2015, “ Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent,” Cardiovasc. Eng. Technol., 6(4), pp. 519–532. [CrossRef] [PubMed]
Debusschere, N. , Segers, P. , Dubruel, P. , Verhegghe, B. , and De Beule, M. , 2015, “ A Finite Element Strategy to Investigate the Free Expansion Behaviour of a Biodegradable Polymeric Stent,” J. Biomech., 48(10), pp. 2012–2018. [CrossRef] [PubMed]
Wu, W. , Petrini, L. , Gastaldi, D. , Villa, T. , Vedani, M. , Lesma, E. , Previtali, B. , and Migliavacca, F. , 2010, “ Finite Element Shape Optimization for Biodegradable Magnesium Alloy Stents,” Ann. Biomed. Eng., 38(9), pp. 2829–2840. [CrossRef] [PubMed]
Wu, W. , Gastaldi, D. , Yang, K. , Tan, L. , Petrini, L. , and Migliavacca, F. , 2011, “ Finite Element Analyses for Design Evaluation of Biodegradable Magnesium Alloy Stents in Arterial Vessels,” Mater. Sci. Eng. B, 176(20), pp. 1733–1740. [CrossRef]
Wu, W. , Chen, S. , Gastaldi, D. , Petrini, L. , Mantovani, D. , Yang, K. , Tan, L. , and Migliavacca, F. , 2013, “ Experimental Data Confirm Numerical Modeling of the Degradation Process of Magnesium Alloys Stents,” Acta Biomater., 9(10), pp. 8730–8739. [CrossRef] [PubMed]
Boland, E. L. , Shine, R. , Kelly, N. , Sweeney, C. A. , and McHugh, P. E. , 2015, “ A Review of Material Degradation Modelling for the Analysis and Design of Bioabsorbable Stents,” Ann. Biomed. Eng., 44(2), pp. 341–356. [CrossRef] [PubMed]
Biotronik SE & Co. KG, 2016, “ Biotronik Announces CE Mark for Magmaris, the First Clinically-Proven Bioresorbable Magnesium Scaffold,” J. Invasive Cardiol., June 15, epub.
Gastaldi, D. , Sassi, V. , Petrini, L. , Vedani, M. , Trasatti, S. , and Migliavacca, F. , 2011, “ Continuum Damage Model for Bioresorbable Magnesium Alloy Devices—Application to Coronary Stents,” J. Mech. Behav. Biomed. Mater., 4(3), pp. 352–365. [CrossRef] [PubMed]
Debusschere, N. , Segers, P. , Dubruel, P. , Verhegghe, B. , and De Beule, M. , 2016, “ A Computational Framework to Model Degradation of Biocorrodible Metal Stents Using an Implicit Finite Element Solver,” Ann. Biomed. Eng., 44(2), pp. 382–390. [CrossRef] [PubMed]
Grogan, J. A. , Leen, S. B. , and McHugh, P. E. , 2014, “ A Physical Corrosion Model for Bioabsorbable Metal Stents,” Acta Biomater., 10(5), pp. 2313–2322. [CrossRef] [PubMed]
Alvarez-Lopez, M. , and Pereda, M. , 2010, “ Corrosion Behaviour of AZ31 Magnesium Alloy With Different Grain Sizes in Simulated Biological Fluids,” Acta Biomater., 6(5), pp. 1763–1771. [CrossRef] [PubMed]
Witte, F. , Fischer, J. , Nellesen, J. , and Crostack, H. , 2006, “ In Vitro and In Vivo Corrosion Measurements of Magnesium Alloys,” Biomaterials, 27(7), pp. 1013–1018. [CrossRef] [PubMed]
Caiazzo, A. , Evans, D. , Falcone, J. L. , Hegewald, J. , Lorenz, E. , Stahl, B. , Wang, D. , Bernsdorf, J. , Chopard, B. , Gunn, J. , Hose, R. , Krafczyk, M. , Lawford, P. , Smallwood, R. , Walker, D. , and Hoekstra, A. , 2011, “ A Complex Automata Approach for In-Stent Restenosis: Two-Dimensional Multiscale Modelling and Simulations,” J. Comput. Sci., 2(1), pp. 9–17. [CrossRef]
Tahir, H. , Bona-Casas, C. , and Hoekstra, A. G. , 2013, “ Modelling the Effect of a Functional Endothelium on the Development of In-Stent Restenosis,” PLoS One, 8(6), p. e66138. [CrossRef] [PubMed]
Boyle, C. J. , Lennon, A. B. , and Prendergast, P. J. , 2011, “ In Silico Prediction of the Mechanobiological Response of Arterial Tissue: Application to Angioplasty and Stenting,” ASME J. Biomech. Eng., 133(8), p. 81001. [CrossRef]
Boyle, C. J. , Lennon, A. B. , Early, M. , Kelly, D. J. , Lally, C. , and Prendergast, P. J. , 2010, “ Computational Simulation Methodologies for Mechanobiological Modelling: A Cell-Centred Approach to Neointima Development in Stents,” Philos. Trans. R. Soc. A, 368(1921), pp. 2919–2935. [CrossRef]
Zahedmanesh, H. , and Lally, C. , 2012, “ A Multiscale Mechanobiological Modelling Framework Using Agent-Based Models and Finite Element Analysis: Application to Vascular Tissue Engineering,” Biomech. Model. Mechanobiol., 11(3–4), pp. 363–377. [CrossRef] [PubMed]
Hwang, M. , Garbey, M. , Berceli, S. A. , and Tran-Son-Tay, R. , 2009, “ Rule-Based Simulation of Multi-Cellular Biological Systems: A Review of Modeling Techniques,” Cell. Mol. Bioeng., 2(3), pp. 285–294. [CrossRef] [PubMed]
Boyle, C. J. , Lennon, A. B. , and Prendergast, P. J. , 2013, “ Application of a Mechanobiological Simulation Technique to Stents Used Clinically,” J. Biomech., 46(5), pp. 918–924. [CrossRef] [PubMed]
Lacroix, D. , Prendergast, P. J. , Li, G. , and Marsh, D. , 2002, “ Biomechanical Model to Simulate Tissue Differentiation and Bone Regeneration: Application to Fracture Healing,” Med. Biol. Eng. Comput., 40(1), pp. 14–21. [CrossRef] [PubMed]
Gómez-Benito, M. J. , García-Aznar, J. M. , Kuiper, J. H. , and Doblaré, M. , 2005, “ Influence of Fracture Gap Size on the Pattern of Long Bone Healing: A Computational Study,” J. Theor. Biol., 235(1), pp. 105–119. [CrossRef] [PubMed]
Burke, D. P. , and Kelly, D. J. , 2012, “ Substrate Stiffness and Oxygen as Regulators of Stem Cell Differentiation During Skeletal Tissue Regeneration: A Mechanobiological Model,” PLoS One, 7(7), p. e40737. [CrossRef] [PubMed]
Lally, C. , and Prendergast, P. J. , 2006, “ Simulation of In-Stent Restenosis for the Design of Cardiovascular Stents,” Mechanics of Biological Tissue SE—18, G. Holzapfel and R. Ogden , eds., Springer, Berlin, pp. 255–267.
McHugh, P. E. , Grogan, J. A. , Conway, C. , and Boland, E. L. , 2015, “ Computational Modeling for Analysis and Design of Metallic Biodegradable Stents,” ASME J. Med. Devices, 9(3), p. 030946. [CrossRef]
Boland, E. L. , Grogan, J. A. , Conway, C. , and Mchugh, P. E. , 2016, “ Computer Simulation of the Mechanical Behaviour of Implanted Biodegradable Stents in a Remodelling Artery,” JOM, 68(4), pp. 1198–1203. [CrossRef]
Kitabata, H. , Waksman, R. , and Warnack, B. , 2014, “ Bioresorbable Metal Scaffold for Cardiovascular Application: Current Knowledge and Future Perspectives,” Cardiovasc. Revasc. Med., 15(2), pp. 109–116. [CrossRef] [PubMed]
Song, G. L. , and Atrens, A. , 1999, “ Corrosion Mechanisms of Magnesium Alloys,” Adv. Eng. Mater., 1(1), pp. 11–33. [CrossRef]
Holzapfel, G. A. , Sommer, G. , Gasser, C. T. , and Regitnig, P. , 2005, “ Determination of Layer-Specific Mechanical Properties of Human Coronary Arteries With Nonatherosclerotic Intimal Thickening and Related Constitutive Modeling,” Am. J. Physiol. Heart Circ. Physiol., 289(5), pp. H2048–H2058. [CrossRef] [PubMed]
Wentzel, J. J. , Krams, R. , Schuurbiers, J. C. , Oomen, J. A. , Kloet, J. , van Der Giessen, W. J. , Serruys, P. W. , and Slager, C. J. , 2001, “ Relationship Between Neointimal Thickness and Shear Stress After Wallstent Implantation in Human Coronary Arteries,” Circulation, 103(13), pp. 1740–1745. [CrossRef] [PubMed]
Koskinas, K. C. , Chatzizisis, Y. S. , Antoniadis, A. P. , and Giannoglou, G. D. , 2012, “ Role of Endothelial Shear Stress in Stent Restenosis and Thrombosis: Pathophysiologic Mechanisms and Implications for Clinical Translation,” J. Am. Coll. Cardiol., 59(15), pp. 1337–1349. [CrossRef] [PubMed]
Bourantas, C. V. , Papafaklis, M. I. , Kotsia, A. , Farooq, V. , Muramatsu, T. , Gomez-Lara, J. , Zhang, Y. J. , Iqbal, J. , Kalatzis, F. G. , Naka, K. K. , Fotiadis, D. I. , Dorange, C. , Wang, J. , Rapoza, R. , Garcia-Garcia, H. M. , Onuma, Y. , Michalis, L. K. , and Serruys, P. W. , 2014, “ Effect of the Endothelial Shear Stress Patterns on Neointimal Proliferation Following Drug-Eluting Bioresorbable Vascular Scaffold Implantation: An Optical Coherence Tomography Study,” JACC Cardiovasc. Interventions, 7(3), pp. 315–324. [CrossRef]
Malek, A. M. , 1999, “ Hemodynamic Shear Stress and Its Role in Atherosclerosis,” JAMA, 282(21), p. 2035. [CrossRef] [PubMed]
Hose, D. R. , Narracott, A. J. , Griffiths, B. , Mahmood, S. , Gunn, J. , Sweeney, D. , and Lawford, P. V. , 2004, “ A Thermal Analogy for Modelling Drug Elution From Cardiovascular Stents,” Comput. Methods Biomech. Biomed. Eng., 7(5), pp. 257–64. [CrossRef]
Koric, S. , Hibbeler, L. C. , and Thomas, B. G. , 2009, “ Explicit Coupled Thermo-Mechanical Finite-Element Model of Continuous Casting of Steel in Funnel Molds,” Int. J. Numer. Methods Eng., 78(1), pp. 1–31. [CrossRef]
Lally, C. , Dolan, F. , and Prendergast, P. J. , 2005, “ Cardiovascular Stent Design and Vessel Stresses: A Finite Element Analysis,” J. Biomech., 38(8), pp. 1574–1581. [CrossRef] [PubMed]
Bedoya, J. , Meyer, C. A. , Timmins, L. H. , Moreno, M. R. , and Moore, J. E. , 2006, “ Effects of Stent Design Parameters on Normal Artery Wall Mechanics,” ASME J. Biomech. Eng., 128(5), pp. 757–65. [CrossRef]
Timmins, L. H. , Moreno, M. R. , Meyer, C. A. , Criscione, J. C. , Rachev, A. , and Moore, J. E. , 2007, “ Stented Artery Biomechanics and Device Design Optimization,” Med. Biol. Eng. Comput., 45(5), pp. 505–513. [CrossRef] [PubMed]
Zahedmanesh, H. , and Lally, C. , 2009, “ Determination of the Influence of Stent Strut Thickness Using the Finite Element Method: Implications for Vascular Injury and In-Stent Restenosis,” Med. Biol. Eng. Comput., 47(4), pp. 385–393. [CrossRef] [PubMed]
Zheng, Y. F. , Gu, X. N. , and Witte, F. , 2014, “ Biodegradable Metals,” Mater. Sci. Eng., 77, pp. 1–34. [CrossRef]
Bowen, P. K. , Gelbaugh, J. A. , Mercier, P. J. , Goldman, J. , and Drelich, J. , 2012, “ Tensile Testing as a Novel Method for Quantitatively Evaluating Bioabsorbable Material Degradation,” J. Biomed. Mater. Res. Part B, 100(8), pp. 2101–2113. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Finite-element model for stent corrosion in a remodeling artery with artery, Biotronik Magmaris stent geometry and ghost/neointima

Grahic Jump Location
Fig. 2

Plot of percentage stent mass loss versus simulation time for uniform and pitting corrosion. Error bars for pitting corrosion represent a single standard deviation from the mean (n = 5).

Grahic Jump Location
Fig. 3

Model images demonstrating gradual neointimal development during the artery remodeling simulation with pitting corrosion (pitting gradual remodeling 67%). The neointimal development is nonuniform and accentuated in the areas around the stent struts where arterial stresses due to stent deployment are highest.

Grahic Jump Location
Fig. 4

Plot of percentage stent recoil versus percentage stent mass loss uniform and pitting corrosion with no remodeling, instantaneous remodeling, and gradual remodeling (33% and 67%), as explained in the text. Error bars represent a single standard deviation from the mean (n = 5).

Grahic Jump Location
Fig. 5

Model images showing uncorroded stent material after 45% mass loss (degradation) for both uniform (a) and pitting (b) corrosion

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In