0
Research Papers

Influence of a Commercial Antithrombotic Filter on the Caval Blood Flow During Neutra and Valsalva Maneuver

[+] Author and Article Information
M. Nicolás, B. Lucea

Aragón Institute of Engineering Research (I3A),
Universidad de Zaragoza,
C/María de Luna s/n,
Zaragoza E-50018, Spain

A. Laborda, M. A. De Gregorio

Grupo de Investigación Técnicas de Mínima
Invasión (GITMI),
Faculty of Veterinary,
Universidad de Zaragoza,
C/Miguel Servet 177,
Zaragoza E-50013, Spain

E. Peña, M. A. Martínez

Centro de Investigación Biomédica en Red en
Bioingeniería Biomateriales y Nanomedicina
(CIBER-BBN),
Aragón Institute of Engineering Research (I3A),
Universidad de Zaragoza,
C/María de Luna s/n,
Zaragoza E-50018, Spain

M. Malvè

Department of Mechanical Engineering,
Energetics and Materials,
Public University of Navarra,
Campus Arrosadía,
Pamplona E-36001, Spain;
Centro de Investigación Biomédica en Red en
Bioingeniería Biomateriales y Nanomedicina
(CIBER-BBN),
Aragón Institute of Engineering Research (I3A),
Universidad de Zaragoza,
C/María de Luna s/n,
Zaragoza E-50018, Spain
e-mail: mauro.malve@unavarra.es

Manuscript received February 16, 2016; final manuscript received December 19, 2016; published online June 27, 2017. Assoc. Editor: Xiaoming He.

J. Med. Devices 11(3), 031002 (Jun 27, 2017) (11 pages) Paper No: MED-16-1033; doi: 10.1115/1.4035983 History: Received February 16, 2016; Revised December 19, 2016

Anticoagulants are the treatment of choice for pulmonary embolism. When these fail or are contraindicated, vena cava filters are effective devices for preventing clots from the legs from migrating to the lung. Many uncertainties exist when a filter is inserted, especially during physiological activity such as normal breathing and the Valsalva maneuver. These activities are often connected with filter migration and vena cava damage due to the various related vein geometrical configurations. In this work, we analyzed the response of the vena cava during normal breathing and Valsalva maneuver, for a healthy vena cava and after insertion of a commercial Günther-Tulip® filter. Validated computational fluid dynamics (CFD) and patient specific data are used for analyzing blood flow inside the vena cava during these maneuvers. While during normal breathing, the vena cava flow can be considered almost stationary with a very low pressure gradient, during Valsalva the extravascular pressure compresses the vena cava resulting in a drastic reduction of the vein section, a global flow decrease through the cava but increasing the velocity magnitude. This change in the section is altered by the presence of the filter which forces the section of the vena cava before the renal veins to keep open. The effect of the presence of the filter is investigated during these maneuvers showing changes in wall shear stress and velocity patterns.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Stein, P. D. , Patel, K. , Kalra, N. , El Baage, T , T., Savarapu, P. , and Silberglet, A. , 2002, “ Deep Venous Thrombosis in a General Hospital,” Chest, 122(3), pp. 960–962. [CrossRef] [PubMed]
Anderson, F. , Wheeler, H. , and Goldberg, R. , 1991, “ A Population Based Perspective of the Hospital Incidence and Case Fatality Rates of Deep Vein Thrombosis and Pulmonary Embolism: The Worcester DVT Study,” Arch. Intern. Med., 151(5), pp. 933–938. [CrossRef] [PubMed]
Hyers, T. M. , Hull, R. D. , and Morris, T. A. , 2001, “ Antithrombotic Therapy for Venous Thromboembolic Disease,” Chest, 119(1), pp. 176S–193S. [CrossRef] [PubMed]
Swaminathan, T. N. , Hu, H. H. , and Patel, A. A. , 2006, “ Numerical Analysis of the Hemodynamics and Embolus Capture of a Greenfield Vena Cava Filter,” ASME J. Biomech. Eng., 128(3), pp. 360–370. [CrossRef]
Phillips, M. R. , Widrich, W. C. , and Johnson, W. C. , 1980, “ Perforation of the Inferior Vena Cava by the Kimray–Greenfield Filter,” Surgery, 87(2), pp. 233–235. [PubMed]
Greenfield, L. J. , Kyung, J. C. , and Tauscher, J. R. , 1990, “ Limitations of Percutaneous Insertion of Greenfield Filters,” J. Cardiovasc. Surg., 31(3), pp. 344–350. http://europepmc.org/abstract/med/2370269
Grassi, C. J. , Swan, T. L. , and Cardella, J. F. , 2001, “ Quality Improvement Guidelines for Percutaneous Permanent Inferior Vena Cava Filter Placement for the Prevention of Pulmonary Embolism,” J. Vasc. Interventional Radiol., 12(2), pp. 137–141. [CrossRef]
Athanasoulis, C. A. , Halpern, J. A. K. E. F. , Geller, A. C. W. S. C. , and Fan, C. , 2000, “ Inferior Vena Caval Filters: Review of a 26-Year Single-Center Clinical Experience,” Radiology, 216(1), pp. 54–66. [CrossRef] [PubMed]
Leask, R. L. , Johnston, K. W. , and Ohja, M. , 2001, “ In Vitro Hemodynamic Evaluation of a Simon Nitinol Vena Cava Filter: Possible Explanation of IVC Occlusion,” J. Vasc. Interventional Radiol., 12(5), pp. 613–618. [CrossRef]
Leask, R. L. , Johnston, K. W. , and Ohja, M. , 2004, “ Hemodynamic Effects of Clot Entrapment in the Trapease Inferior Vena Cava Filter,” J. Vasc. Interventional Radiol., 15(5), pp. 485–490. [CrossRef]
Wang, S. L. , and Singer, M. A. , 2010, “ Toward an Optimal Position for Inferior Vena Cava Filters: Computational Modeling of the Impact of Renal Vein Inflow With Celect and TrapEase Filters,” J. Vasc. Interventional Radiol., 21(3), pp. 367–374. [CrossRef]
Singer, M. A. , Henshaw, W. D. , and Wang, S. L. , 2008, “ Computational Modeling of Blood Flow in the Trapease Inferior Vena Cava Filter,” J. Vasc. Interventional Radiol., 20(6), pp. 799–805.
Stewart, S. F. C. , Robinson, R. A. , Nelson, R. A. , and Malinauskas, R. A. , 2008, “ Effects of Thrombosed Vena Cava Filters on Blood Flow: Flow Visualization and Numerical Modeling,” Ann. Biomed. Eng., 36(11), pp. 1764–1781. [CrossRef] [PubMed]
Singer, M. A. , Wang, S. L. , and Diachin, D. P. , 2009, “ Design Optimization of Vena Cava Filters: An Application to Dual Filtration Devices,” ASME J. Biomech. Eng., 132(10), p. 101006. [CrossRef]
Singer, M. A. , and Wang, S. L. , 2011, “ Modeling Blood Flow in a Tilted Inferior Vena Cava Filter: Does Tilt Adversely Affect Hemodynamics?,” J. Vasc. Interventional Radiol., 22(6), pp. 229–235. [CrossRef]
Rahbar, E. , Mori, D. , and Moore, J. E. , 2011, “ Three-Dimensional Analysis of Flow Disturbances Caused By Clots in Inferior Vena Cava Filters,” J. Vasc. Interventional Radiol., 22(6), pp. 835–842. [CrossRef]
Ren, Z. , Wang, S. L. , and Singer, M. A. , 2012, “ Modeling Hemodynamics in an Unoccluded and Partially Occluded Inferior Vena Cava Under Rest and Exercise Conditions,” Med. Biol. Eng. Comput., 50(3), pp. 277–287. [CrossRef] [PubMed]
Aycock, K. I. , Campbell, R. L. , Manning, K. B. , Sastry, S. P. , Shontz, S. M. , Lynch, F. C. , and Craven, B. A. , 2014, “ A Computational Method for Predicting Inferior Vena Cava Filter Performance on a Patient-Specific Basis,” ASME J. Biomech. Eng., 136(8), p. 081003. [CrossRef]
Greenfield, L. J. , and Proctor, M. C. , 1992, “ Experimental Embolic Capture By Asymmetric Greenfield Filters,” J. Vasc. Surg., 16(3), pp. 436–444. [CrossRef] [PubMed]
Kuzo, R. S. , Pooley, R. A. , Crook, J. E. , Heckman, M. G. , and Gerber, T. C. , 2007, “ Measurement of Caval Blood Flow With MRI During Respiratory Maneuvers: Implications for Vascular Contrast Opacification on Pulmonary CT Angiographic Studies,” Am. J. Roentgenol., 188(3), pp. 839–842. [CrossRef]
Kowallick, J. T. , Joseph, A. A. , Unterberg-Buchwald, C. , Fasshauer, M. , Van Wijk, K. , Merboldt, K. D. , Voit, D. , Frahm, J. , Lotz, J. , and Sohns, J. M. , 2014, “ Measurement of Caval Blood Flow With MRI During Respiratory Maneuvers: Implications for Vascular Contrast Opacification on Pulmonary CT Angiographic Studie,” Br. J. Radiol., 1042(87), p. 20140401. [CrossRef]
Taylor, T. , 1996, “ The Valsalva Manoeuvre a Critical Review,” SPUMS J., 26, pp. 8–13. http://dspace.rubicon-foundation.org:8080/xmlui/handle/123456789/6264
Nishimura, R. A. , and Tajik, A. J. , 1986, “ The Valsalva Manoeuvre and Response Revisited,” Mayo Clin. Proc., 61(3), pp. 211–217. [CrossRef] [PubMed]
Nicolás, M. , Palero, V. R. , Peñaa, E. , Arroyo, M. P. , Martínez, M. A. , and Malvè, M. , 2015, “ Numerical and Experimental Study of the Fluid Flow Through a Medical Device,” Int. Commun. Heat Mass Transfer, 61, pp. 170–178. [CrossRef]
Laborda, A. , Kuo, W. T. , Ioakeim, I. , De Blas, I. , Malvè, M. , Lahuerta, C. , and De Gregorio, M. A. , 2015, “ Respiratory-Induced Haemodynamic Changes: A Contributing Factor to IVC Filter Penetration,” Cardiovasc. Interventional Radiol., 38(5), pp. 1192–1197. [CrossRef]
Laborda, A. , Malvè, M. , De Blas, I. , Ioakeim, I. , Kuo, W. T. , and De Gregorio, M. A. , 2014, “ Influence of Breathing Movements and Valsalva Maneuver on Vena Caval Dynamics,” World J. Radiol., 6(10), pp. 833–839. [CrossRef] [PubMed]
Sastry, S. P. , Kim, J. , Shontz, S. M. , Craven, B. A. , Lynch, F. C. , Manning, K. B. , and Panitanarak, T. , 2013, Image-Based Geometric Modeling and Mesh Generation, Vol. 3, Springer, Dordrecht, The Netherlands.
Cheng, C. P. , Herfkens, R. J. , and Taylor, C. A. , 2003, “ Inferior Vena Cava Hemodynamics Quantified In Vivo at Rest and During Cycling Exercise Using Magnetic Resonance Imaging,” Am. J. Physiol. Heart Circ., 284(4), pp. H1161–H1167. [CrossRef]
ANSYS, 2012, “ ANSYS CFX Solver Theory Guide,” Ansys, Canonsburg, PA.
Murray, C. D. , 1926, “ The Physiological Principle of Minimum Work, the Vascular System and the Cost of Blood Volume,” Proc. Natl. Acad. Sci., 12(3), pp. 207–214. [CrossRef]
Moore, J. E. , and Berry, J. L. , 2002, “ Fluid and Solid Mechanical Implications of Vascular Stenting,” Ann. Biomed. Eng., 30(4), pp. 498–508. [CrossRef] [PubMed]
Malek, A. M. , Alper, S. L. , and Izumo, S. , 1999, “ Hemodynamic Shear Stress and Its Role in Atherosclerosis,” J. Am. Med. Assoc., 282(21), pp. 2035–2042. [CrossRef]
Balossino, R. , Gervaso, F. , Migliavacca, F. , and Dubini, G. , 2008, “ Effects of Different Stent Designs on Local Hemodynamics in Stented Arteries,” J. Biomech., 41(5), pp. 1053–1061. [CrossRef] [PubMed]
Wexler, L. , Bergel, D. H. , Gabe, I. T. , Makin, G. S. , and Mills, C. J. , 1968, “ Velocity of Blood Flow in Normal Human Venae Cavae,” Circ. Res., 23(3), pp. 349–359. [CrossRef] [PubMed]
García, A. , Lerga, S. , Pexña, E. , Malvè, M. , Laborda, A. , De Gregorio, M. A. , and Martínez, M. A. , 2012, “ Evaluation of Migration Forces of a Retrievable Filter: Experimental Setup and Finite Element Study,” Med. Eng. Phys., 34(8), pp. 1167–1176. [CrossRef] [PubMed]
Laborda, A. , Lostalé, F. , Rodríguez, J. B. , Bielsa, M. A. , Martínez, M. A. , Serrano, C. , Fernández, R. , and De Gregorio, M. A. , 2011, “ Laparoscopic Demonstration of Vena Cava Wall Penetration by Inferior Vena Cava Filters in an Ovine Model,” J. Vasc. Interventional Radiol., 22(6), pp. 851–856. [CrossRef]
De Gregorio, M. A. , Gamboa, P. , Gimeno, M. J. , Madariaga, B. , Tobío, R. , Herrera, M. , Medrano, J. , Mainar, A. , and Alfonso, R. , 2003, “ The Günther Tulip Retrievable Filter: Prolonged Temporary Filtration by Repose-Tinning Within the Inferior Vena Cava,” J. Vasc. Interventional Radiol., 14(10), pp. 1259–1265. [CrossRef]
De Gregorio, M. A. , Laborda, A. , Higuera, M. T. , Lostale, F. , Gómez-Arrue, J. , Serrano, C. , Martínez, M. A. , and Viloria, A. , 2008, “ Removal of Retrievable Inferior Vena Cava Filters 90 Days After Implantation in an Ovine Model: Is There a Time Limit for Removal?,” Arch. Bronconeumologia, 44(11), pp. 591–596.

Figures

Grahic Jump Location
Fig. 1

cad model of vena cava during normal breathing (a), normal breathing with filter (b), Valsalva without filter (c), and Valsalva with filter (d). (e) The Günther-Tulip® filter cad model.

Grahic Jump Location
Fig. 2

Vena cava sections in the absence and in the presence of the Günther-Tulip® filter during normal breathing (left subfigures) and Valsalva (right subfigures)

Grahic Jump Location
Fig. 3

Details of the vena cava grid after device deployment (as an example during normal breathing): close up view of the filter struts and the filter middle section

Grahic Jump Location
Fig. 4

Geometry for patients A and B showing the locations where the IVC areas have been studied (a). Boundary conditions for neutra and Valsalva maneuvers (b): mixed measured pressure/velocity conditions are used.

Grahic Jump Location
Fig. 5

Comparison between the vena cava fluid dynamics without filter (a) and after device deployment (b) in neutral conditions. On the upper panel, velocity magnitude is displayed on transversal cut planes, on the lower panel three-dimensional streamlines are shown.

Grahic Jump Location
Fig. 6

Comparison between the vena cava fluid dynamics without filter (a) and after device deployment (b) during Valsalva. On the upper panel, velocity magnitude is displayed on transversal cut planes, and on the lower panel three-dimensional streamlines are shown.

Grahic Jump Location
Fig. 7

Comparison between the vena cava WSS distribution without filter (left panel (a)) and after device deployment (right panel (b)) during normal breathing. The lines along which the WSS is displayed are obtained as intersection between the geometry and a longitudinal cutting-plane as sketched in the figure.

Grahic Jump Location
Fig. 8

Comparison between the vena cava WSS distribution without filter (left panel (a)) and after device deployment (right panel (b)) during Valsalva. The lines along which the WSS is displayed are obtained as intersection between the geometry and a longitudinal cutting-plane as sketched in the figure.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In