0
Research Papers

Machinability and Optimization of Shrouded Centrifugal Impellers for Implantable Blood Pumps

[+] Author and Article Information
Gordon Paul, Amin Rezaienia, Eldad Avital

School of Engineering and Materials Science,
Queen Mary University of London,
London E1 4NS, UK

Theodosios Korakianitis

Professor
Parks College of Engineering,
Aviation and Technology,
Saint Louis University,
St. Louis, MO 63103
e-mail: korakianitis@alum.mit.edu

1Corresponding author.

Manuscript received June 29, 2016; final manuscript received March 14, 2017; published online May 3, 2017. Assoc. Editor: Marc Horner.

J. Med. Devices 11(2), 021005 (May 03, 2017) (7 pages) Paper No: MED-16-1250; doi: 10.1115/1.4036287 History: Received June 29, 2016; Revised March 14, 2017

This paper describes the use of analytical methods to determine machinable centrifugal impeller geometries and the use of computational fluid dynamics (CFD) for predicting the impeller performance. An analytical scheme is described to determine the machinable geometries for a shrouded centrifugal impeller with blades composed of equiangular spirals. The scheme is used to determine the maximum machinable blade angles for impellers with three to nine blades in a case study. Computational fluid dynamics is then used to analyze all the machinable geometries and determine the optimal blade number and angle based on measures of efficiency and rotor speed. The effect of tip width on rotor speed and efficiency is also examined. It is found that, for our case study, a six- or seven-bladed impeller with a low blade angle provides maximum efficiency and minimum rotor speed.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Lloyd, J. , 2011, “ Heart Disease and Stroke Statistics—2009 Update: A Report From the American Heart Association Statistics Committee and Stroke Statistics Subcommittee,” Circulation, 124(16), p. 424. [CrossRef]
Griffith, B. , Kormos, R. , Borovetz, H. , Litwak, K. , Antaki, J. , Poirier, V. , and Butler, K. , 2001, “ HeartMate II Left Ventricular Assist System: From Concept to First Clinical Use,” Ann. Thorac. Surg., 71(3), pp. S116–S120. [CrossRef] [PubMed]
Christiansen, C. , Klocke, A. , and Autschbach, R. , 2008, “ Past, Present, and Future of Long-Term Mechanical Cardiac Support in Adults,” J. Card. Surg., 23(6), pp. 664–676. [PubMed]
Bourque, K. , Gernes, D. B. , Loree, H. M. , Richardson, J. S. , Poirier, V. L. , Barletta, N. , Fleischli, A. , Foiera, G. , Gempp, T. M. , and Schoeb, R. , 2001, “ HeartMate III: Pump Design for a Centrifugal LVAD With a Magnetically Levitated Rotor,” ASAIO J., 47(4), pp. 401–405. [CrossRef] [PubMed]
Wood, C. , Maiorana, A. , Larbalestier, R. , Lovett, M. , Green, G. , and O'Driscoll, G. , 2008, “ First Successful Bridge to Myocardial Recovery With a HeartWare HVAD,” J. Heart Lung Transplant., 27(6), pp. 695–697. [CrossRef] [PubMed]
Hoshi, H. , Shinshi, T. , and Takatani, S. , 2006, “ Third-Generation Blood Pumps With Mechanical Noncontact Magnetic Bearings,” Artif. Organs, 30(5), pp. 324–338. [CrossRef] [PubMed]
Yamazaki, K. , Kihara, S. , Akimoto, T. , Tagusari, O. , Kawai, A. , and Umezu, M. , 2007, “ EVAHEART: An Implantable Centrifugal Blood Pump for Long-Term Circulatory Support,” Jpn. J. Thorac. Cardiovasc. Surg., 50(11), pp. 461–465. [CrossRef]
Molteni, A. , Fraser, K. , Yousef, H. , Low, K. , Rolland, S. , and Foster, G. , 2014, “ Development, Validation and Use of a CFD Model for Iterative Design Improvement of the Calon MiniVAD,” Int. J. Artif. Organs, 37(8), pp. 586–587.
Fan, Y. , Tansley, G. , Fan, H. , and Niu, J. , 2011, “ The Application of Laser Welding on Left Ventricular Assist Device (LVAD),” Symposium on Photonics and Optoelectronics (SOPO), Wuhan, China, May 16–18.
Olin, C. , 2001, “ Titanium in Cardiac and Cardiovascular Applications,” Titanium in Medicine, Springer, Heidelberg, p. 889.
Taskin, M. , Zhang, T. , Fraser, K. , Griffith, B. , and Wu, J. , 2012, “ Design Optimization of a Wearable Artificial Pump-Lung Device With Computational Modeling,” ASME J. Med. Devices, 6(3), p. 031009. [CrossRef]
Wu, J. Z. , Antaki, J. , Verkaik, J. , Snyder, S. , and Ricci, M. , 2012, “ Computational Fluid Dynamics-Based Design Optimization for an Implantable Miniature Maglev Pediatric Ventricular Assist Device,” ASME J. Fluids Eng., 134(4), p. 041101. [CrossRef]
Korakianitis, T. , Rezaienia, M. A. , Paul, G. , Rahideh, A. , Rothman, M. , and Mozafari, S. , 2016, “ Optimization of Centrifugal Pump Characteristic Dimensions for Mechanical Circulatory Support Devices,” ASAIO J., 62(5), pp. 545–551. [CrossRef] [PubMed]
Mozafari, S. , Rezaienia, M. A. , Paul, G. , Rothman, M. , Wen, P. , and Korakianitis, T. , 2016, “ The Effect of Geometry on the Efficiency and Hemolysis of Centrifugal Implantable Blood Pumps,” ASAIO J., 63(1), pp. 53–59. [CrossRef]
Korakianitis, T. , Rezaienia, M. , Hamakhan, I. , and Wheeler, P. , 2013, “ Two- and Three-Dimensional Prescribed Surface Curvature Distribution Blade Design (CIRCLE) Method for the Design of High Efficiency Turbines, Compressors, and Isolated Airfoils,” ASME J. Turbomach., 135(4), p. 041002. [CrossRef]
Shen, X. , Avital, E. , Rezaienia, M. A. , Paul, G. , and Korakianitis, T. , 2006, “ Computational Methods for Investigation of Surface Curvature Effects on Airfoil Boundary Layer Behavior,” J. Algorithms Comput. Technol., 11(1), pp. 68–82. [CrossRef]
Taskin, M. E. , Fraser, K. H. , Zhang, T. , Gellman, B. , Fleischli, A. , Dasse, K. A. , Griffith, B. P. , and Wu, Z. J. , 2010, “ Computational Characterization of Flow and Hemolytic Performance of the UltraMag Blood Pump for Circulatory Support,” Artif. Organs, 34(12), pp. 1099–1113. [CrossRef] [PubMed]
Taskin, M. E. , Fraser, K. H. , Zhang, T. , Wu, C. , Griffith, B. P. , and Wu, Z. J. , 2012, “ Evaluation of Eulerian and Lagrangian Models for Hemolysis Estimation,” ASAIO J., 58(4), pp. 363–372. [CrossRef] [PubMed]
Fraser, K. , Zhang, T. , Taskin, M. , Griffith, B. , and Wu, Z. J. , 2012, “ A Quantitative Comparison of Mechanical Blood Damage Parameters in Rotary Ventricular Assist Devices: Shear Stress, Exposure Time and Hemolysis Index,” ASME J. Biomech. Eng., 134(8), p. 081002. [CrossRef]
Ishii, K. , Hosoda, K. , Isoyama, T. , Saito, I. , Ariyoshi, K. , Inoue, Y. , Sato, M. , Hara, S. , Lee, X. , Wu, S. Y. , and Ono, T. , 2013, “ Pulsatile Driving of the Helical Flow Pump,” 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, July 3–7, pp. 2724–2727.
Fraser, K. H. , Taskin, M. E. , Griffith, B. P. , and Wu, Z. J. , 2011, “ The Use of Computational Fluid Dynamics in the Development of Ventricular Assist Devices,” Med. Eng. Phys., 33(3), pp. 263–280. [CrossRef] [PubMed]
Giersiepen, M. , Wurzinger, L. J. , Opitz, R. , and Reul, H. , 1990, “ Estimation of Shear Stress-Related Blood Damage in Heart Valve Prostheses—In Vitro Comparison of 25 Aortic Valves,” Int. J. Artif. Organs, 13(5), pp. 300–306. [PubMed]
Thamsen, B. , Blümel, B. , Schaller, J. , Paschereit, C. O. , Affeld, K. , Goubergrits, L. , and Kertzscher, U. , 2015, “ Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps,” Artif. Organs, 39(8), pp. 651–659. [CrossRef] [PubMed]
Paul, G. , Rezaienia, M. A. , Rahideh, A. , Munjiza, A. , and Korakianitis, T. , 2016, “ The Effects of Ambulatory Accelerations on the Stability of a Magnetically Suspended Impeller for an Implantable Blood Pump,” Artif. Organs, 40(9), pp. 867–876. [CrossRef] [PubMed]
Timms, D. , Hayne, M. , Tan, A. , and Pearcy, M. , 2005, “ Evaluation of Left Ventricular Assist Device Performance and Hydraulic Force in a Complete Mock Circulation Loop,” Artif. Organs, 29(7), pp. 573–580. [CrossRef] [PubMed]
Rezaienia, M. A. , Paul, G. , Avital, E. , Rahideh, A. , Rothman, M. , and Korakianitis, T. , 2016, “ In-Vitro Investigation of Cerebral-Perfusion Effects of a Rotary Blood Pump Installed in the Descending Aorta,” J. Biomech., 49(9), pp. 1865–1872. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Impeller geometry composed of N equiangular blades with thickness t and constant angle b, and inner and outer radii Rin and Rout

Grahic Jump Location
Fig. 2

(a) Cutting from inside the hub to clean up the leading edge geometry, and (b) cutting in from the outer radius with three translational axes and one rotational

Grahic Jump Location
Fig. 3

Increasing the blade angle until the cutter can no longer reach the LE suction side. (a) 50 deg and (b) 55 deg are machinable, and (c) 60 deg is not.

Grahic Jump Location
Fig. 4

(a) θA–B, the angle between the LE and TE points on the blade's suction side, (b) θTE–LE, where the cutter is in contact with LE and TE, and (c) θLE–LE′, where the cutter is in contact with LE and LE′

Grahic Jump Location
Fig. 5

Increasing the blade angle until the cutter can no longer reach the LE pressure side. The pressure side of (a) 60 deg and (b) 65 deg are machinable, and (c) 70 deg is not.

Grahic Jump Location
Fig. 6

(a) θCD, the angle between the points where the clockwise edge of the cutter meets the rim and hub, (b) θTE–LE′, the minimum angle at which the cutter passes the TE to manufacture the suction side of LE′, and (c) θLE′–TAN, the angle required to machine the geometry at the suction side of LE′

Grahic Jump Location
Fig. 7

The model used in the CFD analysis

Grahic Jump Location
Fig. 8

The results for impellers with tip width optimized for maximum efficiency: left, rotor speed; right, efficiency

Grahic Jump Location
Fig. 9

The effect of tip width on efficiency for a five-bladed impeller for all machinable blade angles

Grahic Jump Location
Fig. 10

The effect of tip width on efficiency for a six-bladed impeller for all machinable blade angles

Grahic Jump Location
Fig. 11

The results for impellers with tip width optimized for minimum rotor speed: left, rotor speed; right, efficiency

Grahic Jump Location
Fig. 12

The effect of tip width on rotor speed for a five-bladed impeller and all machinable blade angles

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In