Research Papers

A New Surgical Drill Instrument With Force Sensing and Force Feedback for Robotically Assisted Otologic Surgery

[+] Author and Article Information
Hongqiang Sang

Advanced Mechatronics Equipment Technology,
Tianjin Area Major Laboratory,
Tianjin Polytechnic University,
Tianjin 300387, China
e-mail: sanghongqiang@tjpu.edu.cn

Reza Monfaredi

The Sheikh Zayed Institute for
Pediatric Surgical Innovation,
Children's National Health System,
Washington, DC 20010
e-mail: rmonfare@childrensnational.org

Emmanuel Wilson

The Sheikh Zayed Institute for
Pediatric Surgical Innovation,
Children's National Health System,
Washington, DC 20010
e-mail: emmanuel.wilson@gmail.com

Hadi Fooladi

The Sheikh Zayed Institute for
Pediatric Surgical Innovation,
Children's National Health System,
Washington, DC 20010
e-mail: HFOOLADIT@childrensnational.org

Diego Preciado

The Sheikh Zayed Institute for
Pediatric Surgical Innovation,
Children's National Health System,
Washington, DC 20010
e-mail: dpreciad@childrensnational.org

Kevin Cleary

The Sheikh Zayed Institute for
Pediatric Surgical Innovation,
Children's National Health System,
Washington, DC 20010
e-mail: KCleary@childrensnational.org

1Corresponding author.

Manuscript received September 26, 2016; final manuscript received March 28, 2017; published online June 27, 2017. Assoc. Editor: Venketesh Dubey.

J. Med. Devices 11(3), 031009 (Jun 27, 2017) (10 pages) Paper No: MED-16-1326; doi: 10.1115/1.4036490 History: Received September 26, 2016; Revised March 28, 2017

Drilling through bone is a common task during otologic procedures. Currently, the drilling tool is manually held by the surgeon. A robotically assisted surgical drill with force sensing for otologic surgery was developed, and the feasibility of using the da Vinci research kit to hold the drill and provide force feedback for temporal bone drilling was demonstrated in this paper. To accomplish intuitive motion and force feedback, the kinematics and coupling matrices of the slave manipulator were analyzed and a suitable mapping was implemented. Several experiments were completed including trajectory tracking, drill instrument calibration, and temporal bone drilling with force feedback. The results showed that good trajectory tracking performance and minor calibration errors were achieved. In addition, temporal bone drilling could be successfully performed and force feedback from the drill instrument could be felt at the master manipulator. In the future, it may be feasible to use master–slave surgical robotic systems for temporal bone drilling.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Díaz, I. , Gil, J. J. , and Louredo, M. , 2013, “ Bone Drilling Methodology and Tool Based on Position Measurements,” Comput. Methods Prog. Biomed., 112(2), pp. 284–292. [CrossRef]
Assadi, M. Z. , Du, X. , Dalton, J. , Henshaw, S. , Coulson, C. J. , Reid, A. P. , Proops, D. W. , and Brett, P. N. , 2013, “ Comparison on Intracochlear Disturbances Between Drilling a Manual and Robotic Cochleostomy,” Proc. Inst. Mech. Eng. H, 227(9), pp. 1002–1008. [CrossRef] [PubMed]
Allotta, B. , Giacalone, G. , and Rinaldi, L. , 1997, “ A Hand-Held Drilling Tool for Orthopedic Surgery,” IEEE/ASME Trans. Mechatronics, 2(4), pp. 218–229. [CrossRef]
Kaburlasos, V. G. , and Petridis, V. , 2000, “ Fuzzy Lattice Neurocomputing (FLN) Models,” Neural Networks, 13(10), pp. 1145–1170. [CrossRef] [PubMed]
Allotta, B. , Belmonte, F. , Bosio, L. , and Dario, P. , 1996, “ Study on a Mechatronic Tool for Drilling in the Osteosynthesis of Long Bones: Tool/Bone Interaction, Modeling and Experiments,” Mechatronics, 6(4), pp. 447–459. [CrossRef]
Ong, F. R. , and Bouazza-Marouf, K. , 1998, “ Drilling of Bone: A Robust Automatic Method for the Detection of Drill Bit Break-Through,” Proc. Inst. Mech. Eng. H, 212(3), pp. 209–221. [CrossRef] [PubMed]
Brett, P. N. , Baker, D. A. , Taylor, R. , and Griffiths, M. V. , 2004, “ Controlling the Penetration of Flexible Bone Tissue Using the Stapedotomy Microdrill,” Proc. Inst. Mech. Eng., I, 218(5), pp. 343–351 http://citeseerx.ist.psu.edu/viewdoc/download?doi=
Lee, W. Y. , Shih, C. L. , and Lee, S. T. , 2004, “ Force Control and Breakthrough Detection of a Bone-Drilling System,” IEEE ASME Trans. Mechatronics, 9(1), pp. 20–29. [CrossRef]
Lee, W. Y. , and Shih, C. L. , 2006, “ Control and Breakthrough Detection of a Three Axis Robotic Bone Drilling System,” Mechatronics, 16(2), pp. 73–84. [CrossRef]
Wayne, A. , 2014, “ Depth Controllable and Measurable Medical Driver Devices and Methods of Use,” Smart Medical Devices, Inc., Las Vegas, NV, U.S. Patent No. US20140371752A1 http://www.google.co.in/patents/US8894654.
Taylor, R. , Du, X. , Proops, D. , Reid, A. , Coulson, C. , and Brett, P. N. , 2010, “ A Sensory Guided Surgical Micro-Drill,” Proc. Inst. Mech. Eng. C, 224(7), pp. 1531–1537. [CrossRef]
Balachandran, R. , Mitchell, J. E. , Blachon, G. , Noble, J. H. , Dawant, B. M. , Fitzpatrick, J. M. , and Labadie, R. F. , 2010, “ Percutaneous Cochlear Implant Drilling Via Customized Frames: An In Vitro Study,” Otolaryngol. Head Neck Surg., 142(3), pp. 421–426. [CrossRef] [PubMed]
Labadie, R. F. , Balachandran, R. , Mitchell, J. E. , Noble, J. F. , Majdani, O. , Haynes, D. S. , Benoit, M. L. , Dawant, B. M. , and Fitzpatrick, J. M. , 2010, “ Clinical Validation Study of Percutaneous Cochlear Access Using Patient Customized Microstereotactic Frames,” Otol. Neurotol., 31(1), pp. 94–99. [CrossRef] [PubMed]
McRackan, T. R. , Balachandran, R. , Blachon, G. S. , Mitchell, J. E. , Noble, J. H. , Wright, C. G. , Fitzpatrick, J. M. , Dawant, B. M. , and Labadie, R. F. , 2013, “ Validation of Minimally Invasive, Image-Guided Cochlear Implantation Using Advanced Bionics, Cochlear, and Medel Electrodes in a Cadaver Model,” Int. J. Comput. Assisted Radiol. Surg., 8(6), pp. 989–995. [CrossRef]
Warren, F. M. , Balachandran, R. , Fitzpatrick, J. M. , and Labadie, R. F. , 2007, “ Percutaneous Cochlear Access Using Bone-Mounted, Customized Drill Guides: Demonstration of Concept In Vitro,” Otol. Neurotol., 28(3), pp. 325–329. [CrossRef] [PubMed]
Kratchman, L. B. , Blachon, G. S. , Withrow, T. J. , Balachandran, R. , and Labadie, R. F. , 2011, “ Design of a Bone-Attached Parallel Robot for Percutaneous Cochlear Implantation,” IEEE Trans. Biomed. Eng., 58(10), pp. 2904–2910. [CrossRef] [PubMed]
Kratchman, L. B. , and Fitzpatrick, J. M. , 2013, “ Robotically-Adjustable Microstereotactic Frames for Image-Guided Neurosurgery,” Proc. SPIE, 8671, p. 86711U.
Labadie, R. F. , Balachandran, R. , Noble, J. H. , Blachon, G. S. , Mitchell, I. E. , Reda, F. A. , Dawant, B. M. , and Fitzpatrick, I. M. , 2014, “ Minimally-Invasive Image-Guided Cochlear Implantation Surgery: First Report of Clinical Implementation,” Laryngoscope, 124(8), pp. 1915–1922. [CrossRef] [PubMed]
Labadie, R. F. , Choudhury, P. , Cetinkaya, E. , Balachandran, R. , Haynes, D. S. , Fenlon, M. R. , Jusczyzck, A. S. , and Fitzpatrick, I. M. , 2005, “ Minimally Invasive, Image-Guided, Facial-Recess Approach to the Middle Ear: Demonstration of the Concept of Percutaneous Cochlear Access In Vitro,” Otol. Neurotol., 26(4), pp. 557–562. https://www.ncbi.nlm.nih.gov/pubmed/16015146 [PubMed]
Louredo, M. , Díaz, I. , and Gil, J. J. , 2012, “ DRIBON: A Mechatronic Bone Drilling Tool,” Mechatronics, 22(8), pp. 1060–1066. [CrossRef]
Dillon, N. P. , Mitchell, J. E. , Zuniga, M. G. , Webster, R. J. , and Labadie, R. F. , 2016, “ Design and Thermal Testing of an Automatic Drill Guide for Less Invasive Cochlear Implantation,” ASME J. Med. Devices, 10(2), p. 020923. [CrossRef]
Bell, B. , Stieger, C. , Gerber, N. , Arnold, A. , Nauer, C. , Hamacher, V. , Kompis, M. , Nolte, L. , Caversaccio, M. , and Weber, S. , 2012, “ A Self-Developed and Constructed Robot for Minimally Invasive Cochlear Implantation,” Acta Otolaryngol., 132(4), pp. 355–360. [CrossRef] [PubMed]
Dillon, N. P. , Balachandranb, R. , Dit Falissec, A. M. , Wanna, G. B. , Labadie, R. F. , Withrow, T. J. , Fitzpatrick, J. M. , and Webster, R. J., III , 2014, “ Preliminary Testing of a Compact, Bone-Attached Robot for Otologic Surgery,” Proc. SPIE, 9036, p. 903614.
Danilchenko, A. , Toennies, J. L. , Balachandran, R. , Baron, S. , Munske, B. , Webster, R. J., III , and Labadie, R. F. , 2011, “ Robotic Mastoidectomy,” Otol. Neurotol., 32(1), pp. 11–16. [CrossRef] [PubMed]
Nguyen, Y. , Miroir, M. , Kazmitcheff, G. , Ferrary, E. , Sterkers, O. , and Bozorg, A. G. , 2012, “ From Conception to Application of a Tele-Operated Assistance Robot for Middle Ear Surgery,” Surg. Innovation, 19(3), pp. 241–251. [CrossRef]
Dillon, N. P. , Balachandran, R. , Fitzpatrick, J. M. , Michael, S. A. , Robert, L. F. , George, W. B. , Thomas, W. J. , and Robert, W. J. , 2015, “ A Compact, Bone-Attached Robot for Mastoidectomy,” ASME J. Med. Devices, 9(3), p. 031003. [CrossRef]
Payne, C. J. , and Yang, G. Z. , 2014, “ Hand-Held Medical Robots,” Ann. Biomed. Eng., 42(8), pp. 1594–1605. [CrossRef] [PubMed]
Liu, W. P. , Azizian, M. , Sorger, J. , Taylor, R. H. , Reilly, B. K. , Cleary, K. , and Preciado, D. , 2014, “ Cadaveric Feasibility Study of da Vinci Si-Assisted Cochlear Implant With Augmented Visual Navigation for Otologic Surgery,” Otolaryngol. Head Neck Surg., 140(3), pp. 208–214. [CrossRef]
Vitiello, V. , Lee, S. L. , Cundy, T. P. , and Yang, G. Z. , 2013, “ Emerging Robotic Platforms for Minimally Invasive Surgery,” IEEE Rev. Biomed. Eng., 6, pp. 111–126. [CrossRef] [PubMed]
MacLachlan, R. A. , Becker, B. C. , Tabarés, J. C. , Podnar, G. W. , Lobes, L. A., Jr. , and Riviere, C. N. , 2012, “ Micron: An Actively Stabilized Handheld Tool for Microsurgery,” IEEE Trans. Rob., 28(1), pp. 195–212. [CrossRef]
Kazanzides, P. , Chen, Z. , Deguet, A. , Fischer, G. S. , Taylor, R. H. , and Dimaio, S. P. , 2014, “ An Open-Source Research Kit for the da Vinci® Surgical System,” IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, May 31–June 7, pp. 6434–6439.
Chen, Z. , Deguet, A. , Taylor, R. , DiMaio, S. , Fischer, G. , and Kazanzides, P. , 2013, “ An Open-Source Hardware and Software Platform for Telesurgical Robotics Research,” Workshop on Systems and Architecture for Computer Assisted Interventions (MICCAI'13), Nagoya, Japan, Sept. 22–26 pp. 1–10 http://www.midasjournal.org/browse/publication/892.


Grahic Jump Location
Fig. 1

The 3DOF tendon-driven surgical instrument

Grahic Jump Location
Fig. 2

The layout design of the tendon transmission

Grahic Jump Location
Fig. 3

The interface design of the surgical drill with F/T sensor

Grahic Jump Location
Fig. 4

The coordinate frame assignment of the PSM1

Grahic Jump Location
Fig. 5

The transmission schematic of the 3DOF tendon-driven surgical drill instrument

Grahic Jump Location
Fig. 6

The master–slave surgical drill robotic system based on the dVRK

Grahic Jump Location
Fig. 7

The master–slave motion and force feedback control structure

Grahic Jump Location
Fig. 8

The trajectory tracking responses under two modes: (a) command mode and (b) master–slave mode

Grahic Jump Location
Fig. 9

The trajectory tracking responses and tracking errors: (a) trajectory tracking and (b) tracking errors

Grahic Jump Location
Fig. 10

The calibration errors: (a) force errors and (b) torque errors

Grahic Jump Location
Fig. 11

The process of the reaming: (a) start, (b) feed, (c) back, and (d) end

Grahic Jump Location
Fig. 12

The force and torque tracking responses of the MTMR: (a) force tracking and (b) torque tracking



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In