Research Papers

Effects of Sterilization on Shape Memory Polyurethane Embolic Foam Devices

[+] Author and Article Information
Rachael Muschalek

Biomedical Engineering,
Texas A&M University,
College Station, TX 77843
e-mail: rmuschalek2015@gmail.com

Landon Nash

Biomedical Engineering,
Texas A&M University,
College Station, TX 77843;
Shape Memory Medical, Inc.,
Santa Clara, CA 95054
e-mail: nashlandon@gmail.com

Ryan Jones

Biomedical Engineering,
Texas A&M University,
College Station, TX 77843
e-mail: jonesrya@tamu.edu

Sayyeda M. Hasan

Biomedical Engineering,
Texas A&M University,
College Station, TX 77843;
Shape Memory Medical, Inc.,
Santa Clara, CA 95054
e-mail: marziyahasan@gmail.com

Brandis K. Keller

Biomedical Engineering,
Texas A&M University,
College Station, TX 77843
e-mail: bkeller@tamu.edu

Mary Beth B. Monroe

Biomedical Engineering,
Texas A&M University,
College Station, TX 77843
e-mail: mbbmonroe@tamu.edu

Duncan J. Maitland

Biomedical Engineering,
Texas A&M University,
College Station, TX 77843;
Shape Memory Medical, Inc.,
Santa Clara, CA 95054
e-mail: djmaitland@tamu.edu

Manuscript received August 3, 2016; final manuscript received May 9, 2017; published online June 28, 2017. Assoc. Editor: Michael Eggen.

J. Med. Devices 11(3), 031011 (Jun 28, 2017) (9 pages) Paper No: MED-16-1296; doi: 10.1115/1.4037052 History: Received August 03, 2016; Revised May 09, 2017

Polyurethane shape memory polymer (SMP) foams have been developed for various embolic medical devices due to their unique properties in minimally invasive biomedical applications. These polyurethane materials can be stored in a secondary shape, from which they can recover their primary shape after exposure to an external stimulus, such as heat and water exposure. Tailored actuation temperatures of SMPs provide benefits for minimally invasive biomedical applications, but incur significant challenges for SMP-based medical device sterilization. Most sterilization methods require high temperatures or high humidity to effectively reduce the bioburden of the device, but the environment must be tightly controlled after device fabrication. Here, two probable sterilization methods (nontraditional ethylene oxide (ntEtO) gas sterilization and electron beam irradiation) are investigated for SMP medical devices. Thermal characterization of the sterilized foams indicated that ntEtO gas sterilization significantly decreased the glass transition temperature. Further material characterization was undertaken on the electron beam (ebeam) sterilized samples, which indicated minimal changes to the thermomechanical integrity of the bulk foam and to the device functionality.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Ratner, B. D. , Hoffman, A. S. , Schoen, F. J. , and Lemons, J. E. , 2004, Biomaterials Science: An Introduction To Materials in Medicine, Academic Press, Cambridge, MA.
Small, W., IV , Singhal, P. , Wilson, T. S. , and Maitland, D. J. , 2010, “ Biomedical Applications of Thermally Activated Shape Memory Polymers,” J. Mater. Chem., 20(17), pp. 3356–3366. [CrossRef] [PubMed]
Baer, G. , Wilson, T. , Matthews, D. , and Maitland, D. , 2007, “ Shape-Memory Behavior of Thermally Stimulated Polyurethane for Medical Applications,” J. Appl. Polym. Sci., 103(6), pp. 3882–3892. [CrossRef]
Lendlein, A. , and Kelch, S. , 2002, “ Shape-Memory Polymers,” Angew. Chem. Int. Ed., 41(12), pp. 2034–2057. [CrossRef]
Maitland, D. J. , Small, W. , Ortega, J. M. , Buckley, P. R. , Rodriguez, J. , Hartman, J. , and Wilson, T. S. , 2007, “ Prototype Laser-Activated Shape Memory Polymer Foam Device for Embolic Treatment of Aneurysms,” J. Biomed. Opt., 12(3), p. 030504. [CrossRef] [PubMed]
Boyle, A. , Weems, A. , Hasan, S. , Nash, L. , Monroe, M. , and Maitland, D. , 2016, “ Solvent Stimulated Actuation of Polyurethane-Based Shape Memory Polymer Foams Using Dimethyl Sulfoxide and Ethanol,” Smart Mater. Struct., 25(7), p. 075014. [CrossRef]
Singhal, P. , Boyle, A. , Brooks, M. L. , Infanger, S. , Letts, S. , Small, W. , Maitland, D. J. , and Wilson, T. S. , 2013, “ Controlling the Actuation Rate of Low-Density Shape-Memory Polymer Foams in Water,” Macromol. Chem. Phys., 214(11), pp. 1204–1214. [CrossRef] [PubMed]
Singhal, P. , Rodriguez, J. N. , Small, W. , Eagleston, S. , Van de Water, J. , Maitland, D. J. , and Wilson, T. S. , 2012, “ Ultra Low Density and Highly Crosslinked Biocompatible Shape Memory Polyurethane Foams,” J. Polym. Sci. Part B: Polym. Phys., 50(10), pp. 724–737. [CrossRef]
Hwang, W. , Singhal, P. , Miller, M. W. , and Maitland, D. J. , 2013, “ In Vitro Study of Transcatheter Delivery of a Shape Memory Polymer Foam Embolic Device for Treating Cerebral Aneurysms,” ASME J. Med. Devices, 7(2), p. 020932. [CrossRef]
Boyle, A. J. , Landsman, T. L. , Wierzbicki, M. A. , Nash, L. D. , Hwang, W. , Miller, M. W. , Tuzun, E. , Hasan, S. M. , and Maitland, D. J. , 2016, “ In Vitro and In Vivo Evaluation of a Shape Memory Polymer Foam-Over-Wire Embolization Device Delivered in Saccular Aneurysm Models,” J. Biomed. Mater. Res. Part B: Appl. Biomater., 104(7), pp. 1407–1415. [CrossRef] [PubMed]
Rodriguez, J. N. , Clubb, F. J. , Wilson, T. S. , Miller, M. W. , Fossum, T. W. , Hartman, J. , Tuzun, E. , Singhal, P. , and Maitland, D. J. , 2014, “ In Vivo Response to an Implanted Shape Memory Polyurethane Foam in a Porcine Aneurysm Model,” J. Biomed. Mater. Res. Part A, 102(5), pp. 1231–1242. [CrossRef]
Horn, J. , Hwang, W. , Jessen, S. L. , Keller, B. K. , Miller, M. W. , Tuzun, E. , Hartman, J. , Clubb, F. J. , and Maitland, D. J. , 2016, “ Comparison of Shape Memory Polymer Foam Versus Bare Metal Coil Treatments in an In Vivo Porcine Sidewall Aneurysm Model,” J. Biomed. Mater. Res. Part B: Appl. Biomater., epub.
Small, W., IV , Wilson, T. S. , Benett, W. J. , Loge, J. M. , and Maitland, D. J. , 2005, “ Laser-Activated Shape Memory Polymer Intravascular Thrombectomy Device,” Opt. Express, 13(20), pp. 8204–8213. [CrossRef] [PubMed]
Kotzar, G. , Freas, M. , Abel, P. , Fleischman, A. , Roy, S. , Zorman, C. , Moran, J. M. , and Melzak, J. , 2002, “ Evaluation of MEMS Materials of Construction for Implantable Medical Devices,” Biomaterials, 23(13), pp. 2737–2750. [CrossRef] [PubMed]
Rutala, W. A. , Weber, D. J. , and the Healthcare Infection Control Practices Advisory Committee (HICPAC), 2008, “ Guideline for Disinfection and Sterilization in Healthcare Facilities,” Centers for Disease Control, Atlanta, GA.
ISO, 2009, “ Biological Evaluation of Medical Devices—Part 1: Evaluation and Testing Within a Risk Management Process,” International Organization for Standardization, Geneva, Switzerland, Standard No. ISO 10993-1:2009 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm348890.pdf.
ISO, 2013, “ Sterilization of Health Care Products—Radiation—Part 2: Establishing the Sterilization Dose,” International Organization for Standardization, Washington, DC, Standard No. ISO 11137-2:2012 https://www.iso.org/standard/62442.html?browse=tc.
Wilson, T. , Bearinger, J. , Herberg, J. , Marion, J. , Wright, W. , Evans, C. , and Maitland, D. , 2007, “ Shape Memory Polymers Based on Uniform Aliphatic Urethane Networks,” J. Appl. Polym. Sci., 106(1), pp. 540–551. [CrossRef]
Mendes, G. C. , Brandao, T. R. , and Silva, C. L. , 2007, “ Ethylene Oxide Sterilization of Medical Devices: A Review,” Am. J. Infect. Control, 35(9), pp. 574–581. [CrossRef] [PubMed]
Rutala, W. A. , and Weber, D. J. , 2015, “ ERCP Scopes: What Can We Do to Prevent Infections?,” Infect. Control Hosp. Epidemiol., 36(6), pp. 643–648. [CrossRef] [PubMed]
Premnath, V. , Harris, W. H. , Jasty, M. , and Merrill, E. W. , 1996, “ Gamma Sterilization of UHMWPE Articular Implants: An Analysis of the Oxidation Problem,” Biomaterials, 17(18), pp. 1741–1753. [CrossRef] [PubMed]
De Nardo, L. , Alberti, R. , Cigada, A. , Yahia, L. H. , Tanzi, M. C. , and Farè, S. , 2009, “ Shape Memory Polymer Foams for Cerebral Aneurysm Reparation: Effects of Plasma Sterilization on Physical Properties and Cytocompatibility,” Acta Biomater., 5(5), pp. 1508–1518. [CrossRef] [PubMed]
Lerouge, S. , Wertheimer, M. R. , and Yahia, L. H. , 2001, “ Plasma Sterilization: A Review of Parameters, Mechanisms, and Limitations,” Plasmas Polym., 6(3), pp. 175–188. [CrossRef]
Allen, J. T. , Calhoun, R. , Helm, J. , Kruger, S. , Lee, C. , Mendonsa, R. , Meyer, S. , Pageau, G. , Shaffer, H. , Whitham, K. , Williams, C. B. , and Farrell, J. P. , 1995, “ A Fully Integrated 10 MeV Electron Beam Sterilization System,” Radiat. Phys. Chem., 46(4–6), pp. 457–460. [CrossRef]
Ecker, M. , Danda, V. , Shoffstall, A. J. , Mahmood, S. F. , Joshi-Imre, A. , Frewin, C. L. , Ware, T. H. , Capadona, J. R. , Pancrazio, J. J. , and Voit, W. E. , 2016, “ Sterilization of Thiol-ene/Acrylate Based Shape Memory Polymers for Biomedical Applications,” Macromol. Mater. Eng., 302(2), pp. 1439–2054.
Hasan, S. M. , Harman, G. , Zhou, F. , Raymond, J. E. , Gustafson, T. P. , Wilson, T. S. , and Maitland, D. J. , 2016, “ Tungsten-Loaded SMP Foam Nanocomposites With Inherent Radiopacity and Tunable Thermos-Mechanical Properties,” Polym. Adv. Technol., 27(2), pp. 195–203. [CrossRef]
Hasan, S. M. , Thompson, R. S. , Emery, H. , Nathan, A. L. , Weems, A. C. , Zhou, F. , Wilson, T. S. , and Maitland, D. J. , 2016, “ Modification of Shape Memory Polymer Foams Using Tungsten, Aluminum Oxide, and Silicon Dioxide Nanoparticles,” RSC Adv., 6(2), pp. 918–927. [CrossRef] [PubMed]
ASTM, 2014, “ Standard Test Method for Tensile Properties of Plastics,” ASTM International, West Conshohocken, PA, Standard No. ASTM D638-14 https://www.astm.org/Standards/D638.htm.
Ping, Z. H. , Nguyen, Q. T. , Chen, S. M. , Zhou, J. Q. , and Ding, Y. D. , 2001, “ States of Water in Different Hydrophilic Polymers—DSC and FTIR Studies,” Polymer, 42(20), pp. 8461–8467. [CrossRef]
Qi, H. J. , and Boyce, M. C. , 2005, “ Stress–Strain Behavior of Thermoplastic Polyurethanes,” Mech. Mater., 37(8), pp. 817–839. [CrossRef]
Coates, J. , 2000, “ Interpretation of Infrared Spectra, a Practical Approach,” Encyclopedia of Analytical Chemistry, Wiley, Hoboken, NJ.
Silindir, M. , and Ozer, A. , 2009, “ Sterilization Methods and the Comparison of e-Beam Sterilization With Gamma Radiation Sterilization,” FABAD J. Pharm. Sci., 34(34), pp. 43–53. https://www.researchgate.net/publication/235764334_Sterilization_methods_and_the_comparison_of_E-Beam_sterilization_with_gamma_radiation_sterilization


Grahic Jump Location
Fig. 1

Tg measurements for the two foam compositions (a and b: 100TMH60; c and d: 100HDID40) in wet (a and c) and dry (b and d) conditions. N = 3, mean ± standard deviation displayed.

Grahic Jump Location
Fig. 2

UTS of (a) 100TMH60 and (b) 100HDIH40 foams. N = 6, mean ± standard deviation displayed.

Grahic Jump Location
Fig. 3

Strain at break of (a) 100TMH60 and (b) 100HDIH40 foams. N = 6, mean ± standard deviation displayed.

Grahic Jump Location
Fig. 4

Cylindrically crimped 1 mm 100TMH60 foam after sterilization

Grahic Jump Location
Fig. 5

Unconstrained expansion over time of exposure to 37 °C water for ebeam sterilized (a) 100TMH60, (b) 100HDIH40, and (c) 100HDIH60 foams. N = 3, mean ± standard deviation displayed. Dotted line indicates initial cut diameter dimensions.

Grahic Jump Location
Fig. 6

FTIR spectra of (a) 100TMH60, (b) 100HDIH40, and (c) 100HDIH60 before and after ebeam sterilization at 40 kGy



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In