0
Review Article

Review of Kinematics for Minimally Invasive Surgery and Tele-Echography Robots

[+] Author and Article Information
L. Nouaille

PRISME Laboratory,
IRAuS Department,
PRES Loire Valley University,
Bourges 18000, France
e-mail: lnouaille@univ-orleans.fr

M. A. Laribi

Department GMSC,
PPRIME Institute,
University of Poitiers,
Chasseneuil 86962, France
e-mail: med.amine.laribi@univ-poitiers.fr

C. A. Nelson

Department of Mechanical and
Materials Engineering,
University of Nebraska-Lincoln,
Lincoln, NE 68588
e-mail: cnelson5@unl.edu

S. Zeghloul

Department GMSC,
PPRIME Institute,
University of Poitiers,
Chasseneuil 86962, France
e-mail: said.zeghloul@univ-poitiers.fr

G. Poisson

PRISME Laboratory,
IRAuS Department,
PRES Loire Valley University,
Bourges 18000, France
e-mail: gpoisson@univ-orleans.fr

Manuscript received October 18, 2016; final manuscript received April 27, 2017; published online October 20, 2017. Assoc. Editor: Venketesh Dubey.

J. Med. Devices 11(4), 040802 (Oct 20, 2017) (14 pages) Paper No: MED-16-1343; doi: 10.1115/1.4037053 History: Received October 18, 2016; Revised April 27, 2017

This paper deals with the survey of kinematic structures adapted to specific medical robots: minimally invasive surgery (MIS) and tele-echography. The large diversity of kinematic architectures that can be found in medical robotics leads us to perform a statistical analysis to inform and guide design of medical robots. Safety constraints and some considerations in design evolution of medical robots are presented in this paper. First, we describe the spectrum of medical robots in minimally invasive surgery and tele-echography applications and particularly the variety of kinematic architectures used. We present the robots and their kinematic architectures and highlight differences that occur in each medical application. We perform a statistical analysis which can serve as a resource in topological synthesis for each specific medical application. Safety is an important specification in medical robotics, and for that reason we show the means used to take into account this constraint. This study demonstrates that the nature of medical robots implies specific requirements leading to different kinematic structures. The statistical analysis gives information on choice of kinematic structures for medical applications (minimally invasive surgery and echography). The safety constraint as well as the interaction between doctor and robot leads to investigate new mechanical solutions to enhance medical robot safety and compliance. We expect that this paper will serve as a significant resource and help the design of future medical robots.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Nouaille, L. , Laribi, M. , Nelson, C. , Essomba, T. , Poisson, G. , and Zeghloul, S. , 2016, “ Design Process for Robotic Medical Tool Guidance Manipulators,” Proc. IMechE Part C, 230(2), pp. 259–275. [CrossRef]
Sackier, J. , and Wang, Y. , 1994, “ Robotically Assisted Laparoscopic Surgery. From Concept to Development,” Surg. Endoscopy, 8(1), pp. 63–66. [CrossRef]
Aiono, S. , Gilbert, J. , Soin, B. , Finlay, P. , and Gordon, A. , 1999, “ Controlled Trial of the Introduction of a Robotic Camera Assistant (Endoassist) for Laparoscopic Cholesystectomy,” Surg. Endoscopy, 16(9), pp. 1267–1270.
Berkelman, P. , Boidard, E. , Cinquin, P. , and Troccaz, J. , 2003, “ LER: The Light Endoscope Robot,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, Oct. 27–31, pp. 2835–2840.
Zemiti, N. , Ortmaier, T. , Vitrani, M. A. , and Morel, G. , 2004, “ A Force Controlled Laparoscopic Surgical Robot Without Distal Force Sensing,” Nineth International Symposium on Experimental Robotics (ISER), Singapore, June 18–21, pp. 153–164.
Preusche, C. , Ortmaier, T. , and Hirzinger, G. , 2002, “ Teleoperation Concepts in Minimal Invasive Surgery,” Control Eng. Pract., 10(11), pp. 1245–1250.
Marescaux, J. , Leroy, J. , Gagner, M. , Rubino, F. , Mutter, D. , Vix, M. , Butner, S. E. , and Smith, M. K. , 2001, “ Transatlantic Robotic Assisted Remote Tele-Surgery,” Nature, 413(6854), pp. 379–380. [CrossRef] [PubMed]
Sallé, D. , 2004, “ Conception Optimale d'Instruments Robotisés à Haute Mobilité Pour la Chirurgie Mini-Invasive,” Ph.D. thesis, University of Paris, Paris, France.
Kang, H. , and Wen, J. T. , 2001, “ EndoBot: A Robotic Assistant in Minimally Invasive Surgeries,” IEEE International Conference on Robotics and Automation (ICRA), Seoul, South Korea, May 21–26, pp. 2031–2036.
Cavusoglu, M. C. , 2000, “ Telesurgery and Surgical Simulation: Design, Modeling, and Evaluation of Haptic Interfaces to Real and Virtual Surgical Environments,” Ph.D. thesis, University of California, Berkeley, CA.
Cavusoglu, M. C. , Williams, W. , Tendick, F. , and Sastry, S. S. , 2001, “ Robotics for Telesurgery: Second Generation Berkeley/UCSF Laparoscopic Telesurgical Workstation and Looking Towards the Future Applications,” Ind. Rob. Int. J., 30(1), pp. 22–29.
Rininsland, H. , 1999, “ ARTEMIS. A Telemanipulator for Cardiac Surgery,” Eur. J. Cardio-Thorac. Surg., 16(2), pp. S106–S111.
Van Meer, F. , 2005, “ Conception et Réalisation d'une Instrumentation Terminale Intégrée en Chirurgie Mini-Invasive Robotisée,” Ph.D. thesis, University of Montpellier, Montpellier, France.
Kehoe, B. , Kahn, G. , Mahler, J. , Kim, J. , Lee, A. , Lee, A. , Nakagawa, K. , Patil, S. , Boyd, W. D. , Abbeel, P. , and Goldberg, K. , 2014, “ Autonomous Multilateral Debridement With the Raven Surgical Robot,” IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, May 31–June 7, pp. 1432–1439.
Hagn, U. , Konietschke, R. , Tobergte, A. , Nickl, M. , Jörg, S. , Kuebler, B. , Passig, G. , Gröger, M. , Fröhlich, F. , Seibold, U. , Le-Tien, L. , Albu-Schäffer, A. , Nothelfer, A. , Hacker, F. , Grebenstein, M. , and Hirzinger, G. , 2010, “ DLR MiroSurge—A Versatile System for Research in Endoscopic Telesurgery,” Int. J. Comput. Assisted Radiol. Surg., 5(2), pp. 183–193. [CrossRef]
Feng, M. , Fu, Y. , Pan, B. , and Wang, S. , 2010, “ Design and Implementation of a Medical Robot for Celiac Minimally Invasive Surgery,” IEEE International Conference on Robotics and Biomimetics (ROBIO), Tianjin, China, Dec. 14–18, pp. 47–52.
Eindhoven University of Technology, 2010, “ Better Surgery With New Surgical Robot With Force Feedback,” Eindhoven University of Technology, Eindhoven, The Netherlands, accessed June 27, 2017, https://www.tue.nl/en/university/news-and-press/news/27-09-2010-better-surgery-with-new-surgical-robot-with-force-feedback/
Rossitto, C. , Gueli Alletti, S. , Fanfani, F. , Fagotti, A. , Costantini, B. , Gallotta, V. , Selvaggi, L. , Monterossi, G. , Restaino, S. , Gidaro, S. , and Scambia, G. , 2016, “ Learning a New Robotic Surgical Device: Telelap Alf X in Gynaecological Surgery,” Int. J. Med. Rob., 12(3), pp. 490–495. [CrossRef]
Laribi, M. A. , Arsicault, M. , Rivière, T. , and Zeghloul, S. , 2012, “ Toward New Minimally Invasive Surgical Robotic System,” IEEE International Conference on Industrial Technology (ICIT), Athens, Greece, Mar. 19–21, pp. 504–509.
Laribi, M. A. , Rivière, T. , Arsicault, M. , and Zeghloul, S. , 2012, “ A Design of Slave Surgical Robot Based on Motion Capture,” IEEE International Conference on Robotics and Biomimetics (ROBIO), Guangzhou, China, Dec. 11–14, pp. 600–605.
Ortmaier, T. , and Konietschke, R. , 2006, “ Image Guided Robotic Surgery—Towards Less Invasive Therapy,” Workshop on Robotics Based Medicine of the IEEE International Conference on Robotics and Automation (ICRA), Orlando, FL, May 15–19.
De Cuhna, D. , Gravez, P. , Leroy, C. , Maillard, E. , Jouan, J. , Varley, P. , Jones, M. , Halliwell, M. , Hawkes, D. , Wells, P. N. T. , and Angelini, L. , 1998, “ The MIDSTEP System for Ultrasound Guided Remote Tele-Surgery,” 20th International Conference on IEEE Engineering in Medecine and Biology Society, Hong Kong, China, Oct. 29–Nov. 1, Vol. 3, pp. 1266–1269.
Gourdon, A. , Poignet, P. , Poisson, G. , Vieyres, P. , and Marche, P. , 1999, “ A New Robotic Mechanism for Medical Application,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Atlanta, GA, Sept. 19–23, pp. 33–38.
Salcudean, S. , Zhu, W. H. , Abolmaesumi, P. , Bachmann, S. , and Lawrence, P. D. , 1999, “ A Robot System for Medical Ultrasound,” 9th International Symposium of Robotics Research (ISRR), Snowbird, UT, Oct. 9–12, pp. 152–159.
Mitsuishi, M. , Warisawa, S. , Tsuda, T. , Higuchi, T. , Koizumi, N. , Hashizume, H. , and Fujiwara, K. , 2001, “ Remote Ultrasound Diagnostic System,” IEEE International Conference on Robotics and Automation (ICRA), Seoul, South Korea, May 21–26, Vol. 2, pp. 1567–1573.
Courreges, F. , Smith-Guerin, N. , Poisson, G. , Vieyres, P. , Gourdon, A. , Szpieg, M. , and Merigeaux, O. , 2001, “ Real-Time Exhibition of a Simulated Space Tele-Echography Using an Ultra-Light Robot,” Sixth International Symposium on Artificial Intelligence and Robotics and Automation in Space (i-SAIRAS 2001), Canadian Space Agency, St-Hubert, QC, Canada, June 18–22.
Vilchis, A. , 2003, “ Télé-Échographie Robotisée,” Ph.D. thesis, University of Grenoble, Grenoble, France.
Al Bassit, L. , 2005, “ Structures Mécaniques à Modules Sphériques Optimisées Pour un Robot Médical de Télé-Échographie Mobile,” Ph.D. thesis, University of Orleans, Orleans, France.
Najafi, F. , 2004, “ Design and Prototype of a Robotic System for Remote Palpation and Ultrasound Imaging,” Ph.D. thesis, University of Manitoba, Winnipeg, MB, Canada.
Najafi, F. , and Sepehri, N. , 2008, “ A Novel Hand Controller for Remote Ultrasound Imaging,” Mechatronics, 18(10), pp. 578–590. [CrossRef]
Nouaille, L. , Vieyres, P. , and Poisson, G. , 2012, “ Process of Optimization for a 4 DOF Tele-Echography Robot,” Robotica, 30(7), pp. 1131–1145. [CrossRef]
Ito, K. , Sugano, S. , and Iwata, H. , 2010, “ Portable and Attachable Tele-Echography Robot System: FASTele,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Buenos Aires, Argentina, Aug. 31–Sept. 4, pp. 487–490.
Nakadate, R. , Matsunaga, Y. , Solis, J. , Takanishi, A. , Minagawa, E. , Sugawara, M. , and Niki, K. , 2011, “ Development of a Robot Assisted Carotid Blood Flow Measurement System,” Mech. Mach. Theory, 46(8), pp. 1066–1083. [CrossRef]
Arbeille, P. , Poisson, G. , Vieyres, P. , Ayoub, J. , Porchet, M. , and Boulay, J. , 2003, “ Echographic Examination in Isolated Sites Controlled From an Expert Centre Using a 2D Echograph Guided by a Robotic Arm,” Ultrasound Med. Biol., 29(7), pp. 993–1000. [CrossRef] [PubMed]
Arbeille, P. , Capri, A. , Ayoub, J. , Kieffer, V. , Georgescu, M. , and Poisson, G. , 2007, “ Use of a Robotic Arm to Tele Operated Abdominal Ultrasound,” Am. J. Roentgenol., 188(4), pp. 317–322. [CrossRef]
Kuo, C. , Dai, J. , and Dasgupta, P. , 2012, “ Kinematic Design Considerations for Minimally Invasive Surgical Robots: An Overview,” Int. J. Med. Rob. Comput. Assisted Surg., 8(2), pp. 127–145. [CrossRef]
Rosen, J. , Brown, J. D. , Barreca, M. , Chang, L. , Hannaford, B. , and Sinanan, M. , 2002, “ The Blue DRAGON—A System for Monitoring the Kinematics and the Dynamics of Endoscopic Tools in Minimally Invasive Surgery for Objective Laparoscopic Skill Assessment,” Stud. Health Technol. Inform., 85, pp. 412–418. [PubMed]
Nouaille, L. , Poisson, G. , Zhang, X. , and Nelson, C. A. , 2013, “ Method of Dimensional Optimization of Spherical Robots for Medical Applications Using Specialized Indices,” Adv. Rob., 28(3), pp. 173–186. [CrossRef]
Dario, P. , Guglielmelli, E. , Allotta, B. , and Carrozza, M. , 1996, “ Robotics for Medical Applications,” IEEE Rob. Autom. Mag., 3(3), pp. 44–56. [CrossRef]
Casals, A. , 1998, “ Robots in Surgery,” Autonomous Robotic Systems, Vol. 236, A. T. de Almeida and O. Khatib , eds., Springer Verlag, Berlin, pp. 222–234. [CrossRef]
J. Troccaz, 2012, Robotique médicale, Lavoisier, Paris, France.
Davies, B. , 2002, “ Robotic Surgery: Is a ‘Hands-On’ Approach the Way Forward?,” Surgetica, Computer-Aided Medical Interventions: Tools and Applications, Sauramps Medical, Montpellier, France, pp. 57–62.
Hoeckelmann, M. , Rudas, I. J. , Fiorini, P. , Kirchner, F. , and Haidegger, T. , 2015, “ Current Capabilities and Development Potential in Surgical Robotics,” Int. J. Adv. Rob. Syst., 12(5), pp. 1–39.
Avgousti, S. , Christoforou, E. G. , Panayides, A. S. , Voskarides, S. , Novales, C. , Nouaille, L. , Pattichis, C. S. , and Vieyres, P. , 2016, “ Medical Telerobotic Systems: Current Status and Future Trends,” Biomed. Eng. Online, 15(1), p. 96. [CrossRef] [PubMed]
Smith-Guérin, N. , Nouaille, L. , Vieyres, P. , and Poisson, G. , 2008, “ A Medical Robot Kinematic Design Approach Based on Knowledge Management,” Ind. Rob.: Int. J., 35(4), pp. 316–323. [CrossRef]
SurgRob, 2012, “ The Indian MAXIO System,” SurgRob, accessed June 27, 2017, http://surgrob.blogspot.fr/2012/08/the-indian-maxio-system.html
SurgRob, 2014, “ iSYS 1 Robot is Now FDA Cleared,” SurgRob, accessed June 27, 2017, http://surgrob.blogspot.fr/2014/03/isys-1-robot-is-now-fda-cleared.html
Shoham, M. , Burman, M. , Zehavi, E. , Joskowicz, L. , Batkilin, E. , and Kunicher, Y. , 2003, “ Bone-Mounted Miniature Robot for Surgical Procedures: Concept and Clinical Applications,” IEEE Trans. Rob. Autom., 19(5), pp. 893–901. [CrossRef]
Laribi, M. , Essomba, T. , Zeghloul, S. , and Poisson, G. , 2011, “ Optimal Synthesis of a New Spherical Parallel Mechanism for Application to Tele-Echography Chain,” ASME Paper No. DETC2011-47184.
Michelin, M. , 2004, “ Contribution à la Commande de Robots Pour la Chirurgie Mini-Invasive,” Ph.D. thesis, University of Montpellier, Montpellier, France.
Duchemin, G. , Poignet, P. , Dombre, E. , and Pierrot, F. , 2004, “ The Challenge of Designing and Manufacturing Actuated Medical Robots for Safe Human Interaction,” IEEE Rob. Autom. Mag., 11(2), pp. 46–55. [CrossRef]
Davies, B. , 1993, “ Safety of Medical Robots,” Sixth International Conference on Advanced Robotics (ICAR), Tokyo, Japan, Nov. 1–2, pp. 311–317.
Troccaz, J. , 2012, Medical Robotics, Wiley, Hoboken, NJ.
Guiochet, J. , and Vilchis, A. , 2002, “ Safety Analysis of a Medical Robot for Tele-Echography,” Second IARP IEEE/RAS Joint Workshop on Technical Challenge for Dependable Robots in Human Environments, Toulouse, France, Oct. 7–8, pp. 217–227.
Pierrot, F. , Dombre, E. , Dégoulange, E. , Urbain, L. , Caron, P. , Boudet, S. , Gariépy, J. , and Mégnien, J. , 1999, “ Hippocrate: A Safe Robot Arm for Medical Applications With Force Feedback,” Med. Image Anal., 3(3), pp. 285–300. [CrossRef] [PubMed]
Nagel, M. , Schmidt, G. , Schnuetgen, G. , and Kalender, W. A. , 2004, “ Risk Management for a Robot-Assisted Needle Positioning System for Interventional Radiology,” Computer Aided Radiology and Surgery Conference (CARS), Chicago, IL, June 23–26, pp. 549–554.
Engel, D. , Raczkowsky, J. , and Worn, H. , 2001, “ A Safe Robot System for Craniofacial Surgery,” IEEE International Conference on Robotics and Automation (ICRA), Seoul, South Korea, May 21–26, pp. 2020–2024.
Laible, U. , Burger, T. , and Pritschow, G. , 2004, “ A Fail-Safe Dual Channel Robot Control for Surgery Applications,” Saf. Sci., 42(5), pp. 423–436. [CrossRef]
Korb, W. , Kornfeld, M. , Birkfellner, W. , Boesecke, R. , Figl, M. , Fuerst, M. , Kettenbach, J. , Vogler, A. , Hassfeld, S. , and Kornreif, G. , 2005, “ Risk Analysis and Safety Assessment in Surgical Robotics: A Case Study on Biopsy Robot,” Minimally Invasive Ther., 14(1), pp. 23–31. [CrossRef]
Lens, T. , 2012, “ Physical Human-Robot Interaction With a Lightweight, Elastic Tendon Driven Robotic Arm: Modeling, Control, and Safety Analysis,” Ph.D. thesis, TU Darmstadt, Darmstadt, Germany.
SAFROS, 2013, “ The SAFROS Project: Results,” University of Verona, Verona, Italy, accessed June 27, 2017, http://www.safros.eu/safros/results/
Albu-Schäffer, A. , Haddadin, S. , Ott, C. , Stemmer, A. , Wimböck, T. , and Hirzinger, G. , 2007, “ The DLR Lightweight Robot: Design and Control Concepts for Robots in Human Environments,” Ind. Rob., 34(5), pp. 376–385. [CrossRef]
SurgRob, 2011, “ The New ALF-X Robot,” SurgRob, accessed June 27, 2017, http://surgrob.blogspot.fr/2011/07/new-alf-x-robot.html
Dario, P. , Laschi, C. , and Guglielmelli, E. , 2001, “ Dependability in Biomedical Robotics: Critical Issues and Main Challenges,” First IARP/IEEE-RAS Joint Workshop on Technical Challenge of Dependable Robots in Human Environments, Seoul, South Korea, May 21–22, Paper No. VI-2.
Saafi, H. , Laribi, M. A. , and Zeghloul, S. , 2015, “ Forward Kinematic Model Improvement of a Spherical Parallel Manipulator Using Extra Sensor,” Mech. Mach. Theory, 91, pp. 102–119. [CrossRef]
Pratt, G. A. , and Williamson, M. M. , 1995, “Series Elastic Actuators,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Human Robot Interaction and Cooperative Robots, Vol. 1, Pittsburgh, PA, Aug. 5–9, pp. 399–406.
Migliore, S. A. , Brown, E. A. , and DeWeerth, S. P. , 2005, “ Biologically Inspired Joint Stiffness Control,” IEEE International Conference on Robotics and Automation (ICRA), Barcelona, Spain, Apr. 18–22, pp. 4508–4513.
Van Ham, R. , Sugar, T. , Vanderborght, B. , Hollander, K. , and Lefeber, D. , 2009, “ Compliant Actuator Designs. Review of Actuators With Passive Adjustable Compliance/Controllable Stiffness for Robotic Applications,” IEEE Rob. Autom. Mag., 16(3), pp. 81–94. [CrossRef]
Vanderborght, B., Albu-Schaeffer, A., Bicchi, A., Burdet, E., Caldwell, D. G., Carloni, R., Catalano, M., Eiberger, O., Friedl, W., Ganesh, G., Garabini, M., Grebenstein, M., Grioli, G., Haddadin, S., Hoppner, H., Jafari, A., Laffranchi, M., Lefeber, D., Petit, F., Stramigioli, S., Tsagarakis, N., Van Damme, M., Van Ham, R., Visser, L. C., and Wolf, S., 2013, “Variable Impedance Actuators: A Review,” Rob. Auton. Sys., 61(12), pp. 1601–1614.
Rouse, E. J. , Mooney, L. M. , and Herr, H. M. , 2014, “ Clutchable Series-Elastic Actuator: Implications for Prosthetic Knee Design,” Int. J. Rob. Res., 33(13), pp. 1611–1625. [CrossRef]
Park, J.-J. , Song, J.-B. , and Kim, H.-S. , 2008, “ Safe Joint Mechanism Based on Passive Compliance for Collision Safety,” Recent Progress in Robotics: Viable Robotic Service to Human, Vol. 370, Springer, Berlin, pp. 49–61. [CrossRef]
Lauzier, N. , and Gosselin, C. , 2010, “ 3-DOF Cartesian Force Limiting Device Based on the Delta Architecture for Safe Physical Human-Robot Interaction,” IEEE International Conference on Robotics and Automation (ICRA), Anchorage, AK, May 3–7, pp. 3420–3425.
ANR, 2014, “ Safety Intelligent Sensor for Cobots,” French National Research Agency, Poitiers, France, accessed June 27, 2017, http://anr-siscob.prd.fr/
Ayoubi, Y. , Laribi, M. A. , Courrèges, F. , Zeghloul, S. , and Arsicault, M. , 2016, “ A Complete Methodology to Design a Safety Mechanism for Prismatic Joint Implementation,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, South Korea, Oct. 9–14, pp. 304–309.
Tonietti, G. , Schiavi, R. , and Bicchi, A. , 2005, “ Design and Control of a Variable Stiffness Actuator for Safe and Fast Physical Human/Robot Interaction,” IEEE International Conference on Robotics and Automation (ICRA), Barcelona, Spain, Apr. 18–22, pp. 528–533.
Petit, F. , Chalon, M. , Friedl, W. , Grebenstein, W. , Albu-Schaffer, A. , and Hirzinger, G. , 2010, “ Bidirectional Antagonistic Variable Stiffness Actuation: Analysis, Design & Implementation,” IEEE International Conference on Robotics and Automation (ICRA), Anchorage, AK, May 3–8, pp. 4189–4196.
Wolf, S. , Eiberger, O. , and Hirzinger, G. , 2011, “ The DLR FSJ: Energy Based Design of a Variable Stiffness Joint,” IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9–13, pp. 5082–5089.
Eiberger, O. , Haddadin, S. , Weis, M. , Albu-Schäffer, A. , and Hirzinger, G. , “ On Joint Design With Intrinsic Variable Compliance: Derivation of the DLR QA-Joint,” IEEE International Conference on Robotics and Automation (ICRA), Anchorage, AK, May 3–7, pp. 1687–1694.
Van Ham, T. , Vanderborght, B. , Van Damme, M. , Verrelst, B. , and Lefeber, D. , 2007, “ MACCEPA, the Mechanically Adjustable Compliance and Controllable Equilibrium Position Actuator: Design and Implementation in a Biped Robot,” Rob. Auton. Syst., 55(10), pp. 761–768. [CrossRef]
Park, J.-J. , Kim, H.-S. , and Song, J.-B. , 2009, “ Safe Robot Arm With Safe Joint Mechanism Using Nonlinear Spring System for Collision Safety,” IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, May 12–17, pp. 3371–3376.
Jafari, A. , Tsagarakis, N. G. , and Caldwell, D. G. , 2015, “ A Novel Intrinsically Energy Efficient Actuator With Adjustable Stiffness (AwAS),” IEEE/ASME Trans. Mech., 18(1), pp. 355–365. [CrossRef]
Jafari, A. , Tsagarakis, N. , G., Sardellitti , I., and Caldwell , D. G. , 2014, “ A New Actuator With Adjustable Stiffness Based on a Variable Ratio Lever Mechanism,” IEEE/ASME Trans. Mech., 19(1), pp. 55–63. [CrossRef]
Quy, H. V. , Aryananda, L. , Sheikh, F. I. , Casanova, F. , and Pfeifer, R. , 2011, “ A Novel Mechanism for Varying Stiffness Via Changing Transmission Angle,” IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9–13, pp. 5076–5081.

Figures

Grahic Jump Location
Fig. 1

Kinematic representation of EndoAssist [3] (a) and Aesop [2] (b) robots

Grahic Jump Location
Fig. 2

Kinematic representation of LER [4] (a) and MC2E [5] (b) robots

Grahic Jump Location
Fig. 3

Kinematic representation of Lapman robot [6]

Grahic Jump Location
Fig. 5

Kinematic representation of Endobot robot [9]

Grahic Jump Location
Fig. 6

Kinematic representation of RTW robot version 1 [10]

Grahic Jump Location
Fig. 7

Kinematic representation of Artemis robot [12]

Grahic Jump Location
Fig. 8

Kinematic representation of Endoxirob robot [13]

Grahic Jump Location
Fig. 9

Kinemantic representation of CMIS [16] (a), Sofie [17] (b), and Telelap alf-X (c) robots [18]

Grahic Jump Location
Fig. 10

Telemanipulator system for MIS (slave robot [19] (left) and master device [20] (right))

Grahic Jump Location
Fig. 12

Kinematic representation of Salcudean's pantographic manipulator [24]

Grahic Jump Location
Fig. 13

Kinematic representation of RUDS robot [25]

Grahic Jump Location
Fig. 14

Kinematic representation of Teresa robot [26]

Grahic Jump Location
Fig. 15

Kinematic representation of TER robot [27]

Grahic Jump Location
Fig. 16

Otelo 2 robot [28] kinematic representation

Grahic Jump Location
Fig. 17

Kinematic representation of second tele-echography robot of Najafi and Sepehri [30]

Grahic Jump Location
Fig. 18

Estele (a), Prosit 1 (b) [31]

Grahic Jump Location
Fig. 19

Kinematic representation of (a) WTA-2R hybrid manipulator; (b) leg of its parallel structure [33]

Grahic Jump Location
Fig. 20

Statistical measures of medical gesture: probe orientation versus % time [28]

Grahic Jump Location
Fig. 22

Medical domains of 98 medical robots studied

Grahic Jump Location
Fig. 23

Kinematic structure of medical robots

Grahic Jump Location
Fig. 24

Design of the wrist of medical robots

Grahic Jump Location
Fig. 27

Breakdown of endoscope holder robots

Grahic Jump Location
Fig. 28

Breakdown of telemanipulator MIS robots

Grahic Jump Location
Fig. 29

Breakdown of tool holder robots

Grahic Jump Location
Fig. 30

Breakdown of echographic robots

Grahic Jump Location
Fig. 31

Design of echographic robots

Grahic Jump Location
Fig. 32

Design of the wrist of echographic robots

Grahic Jump Location
Fig. 34

Slider-crank mechanism with linear spring [71]

Grahic Jump Location
Fig. 35

Torque limiter for Delta parallel mechanism [72]

Grahic Jump Location
Fig. 36

Prismatic compliant joint: CAD model (left) and prototype (right) [74]

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In