0
Review Article

Ventricular Assist Devices: Current State and Challenges

[+] Author and Article Information
Siamak N. Doost

Biomechanical and Tissue Engineering Lab,
Faculty of Science, Engineering and Technology,
Swinburne University of Technology,
1 Alfred Street,
Hawthorn VIC 3122, Australia
e-mail: Sndoost@swin.edu.au

Liang Zhong

National Heart Research Institute of Singapore,
National Heart Centre,
5 Hospital Drive,
Singapore 169609, Singapore;
Duke-NUS Medical School,
8 College Road,
Singapore 169857, Singapore
e-mail: Zhong.liang@nhcs.com.sg

Yosry S. Morsi

Biomechanical and Tissue Engineering Lab,
Faculty of Science, Engineering and Technology,
Swinburne University of Technology,
1 Alfred Street,
Hawthorn VIC 3122, Australia
e-mail: ymorsi@swin.edu.au

1Corresponding authors.

Manuscript received December 12, 2016; final manuscript received May 27, 2017; published online August 8, 2017. Assoc. Editor: Michael Eggen.

J. Med. Devices 11(4), 040801 (Aug 08, 2017) (11 pages) Paper No: MED-16-1375; doi: 10.1115/1.4037258 History: Received December 12, 2016; Revised May 27, 2017

Cardiovascular disease (CVD), as the most prevalent human disease, incorporates a broad spectrum of cardiovascular system malfunctions/disorders. While cardiac transplantation is widely acknowledged as the optional treatment for patients suffering from end-stage heart failure (HF), due to its related drawbacks, such as the unavailability of heart donors, alternative treatments, i.e., implanting a ventricular assist device (VAD), it has been extensively utilized in recent years to recover heart function. However, this solution is thought problematic as it fails to satisfactorily provide lifelong support for patients at the end-stage of HF, nor does is solve the problem of their extensive postsurgery complications. In recent years, the huge technological advancements have enabled the manufacturing of a wide variety of reliable VAD devices, which provides a promising avenue for utilizing VAD implantation as the destination therapy (DT) in the future. Along with typical VAD systems, other innovative mechanical devices for cardiac support, as well as cell therapy and bioartificial cardiac tissue, have resulted in researchers proposing a new HF therapy. This paper aims to concisely review the current state of VAD technology, summarize recent advancements, discuss related complications, and argue for the development of the envisioned alternatives of HF therapy.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

WHO, 2014, “ World Health Statistics 2014,” World Health Organization, Geneva, Switzerland.
Caballero, A. D. , and Laín, S. , 2013, “ A Review on Computational Fluid Dynamics Modelling in Human Thoracic Aorta,” Cardiovasc. Eng. Technol., 4(2), pp. 103–130. [CrossRef]
Doost, S. N. , Ghista, D. , Su, B. , Zhong, L. , and Morsi, Y. S. , 2016, “ Heart Blood Flow Simulation: A Perspective Review,” Biomed. Eng. Online, 15(101), pp. 1–28.
Arefin, M. S. , Awad, N. K. , Rathore, C. P. , Shukla, A. , and Morsi, Y. S. , 2016, “ Ventricular Assist Device and Its Necessity for Elderly Population,” Optimizing Assistive Technologies for Aging Populations, Y. S. Morsi, A. Shukla, and C. P. Rathore , eds., IGI Global, Hershey, PA, pp. 314–334.
Wohlschlaeger, J. , Schmitz, K. J. , Schmid, C. , Schmid, K. W. , Keul, P. , Takeda, A. , Weis, S. , Levkau, B. , and Baba, H. A. , 2005, “ Reverse Remodeling Following Insertion of Left Ventricular Assist Devices (LVAD): A Review of the Morphological and Molecular Changes,” Cardiovasc. Res., 68(3), pp. 376–386. [CrossRef] [PubMed]
Garbade, J. , Bittner, H. B. , Barten, M. J. , and Mohr, F.-W. , 2011, “ Current Trends in Implantable Left Ventricular Assist Devices,” Cardiol. Res. Pract., 2011, pp. 1–9. [CrossRef]
Wilson, S. R. , Givertz, M. M. , Stewart, G. C. , and Mudge, J. G. H. , 2009, “ Ventricular Assist Devices: The Challenges of Outpatient Management,” J. Am. Coll. Cardiol., 54(18), pp. 1647–1659. [CrossRef] [PubMed]
Blaxall, B. C. , Tschannen-Moran, B. M. , Milano, C. A. , and Koch, W. J. , 2003, “ Differential Gene Expression and Genomic Patient Stratification Following Left Ventricular Assist Device Support,” J. Am. Coll. Cardiol., 41(7), pp. 1096–1106. [CrossRef] [PubMed]
Trochu, J.-N. , Leprince, P. , Bielefeld-Gomez, M. , Bastien, O. , Beauvais, F. , Gueffet, J.-P. , Logeart, D. , Isnard, R. , Iliou, M.-C. , Leclercq, C. , and Girard, C. , 2012, “ Left Ventricle Assist Device: When and Which Patients Should We Refer?,” Arch. Cardiovasc. Dis., 105(2), pp. 114–121. [CrossRef] [PubMed]
Slaughter, M. S. , Rogers, J. G. , Milano, C. A. , Russell, S. D. , Conte, J. V. , Feldman, D. , Sun, B. , Tatooles, A. J. , Delgado, R. M. I. , Long, J. W. , Wozniak, T. C. , Ghumman, W. , Farrar, D. J. , and Frazier, O. H. , 2009, “ Advanced Heart Failure Treated With Continuous-Flow Left Ventricular Assist Device,” N. Engl. J. Med., 361(23), pp. 2241–2251. [CrossRef] [PubMed]
Trachtenberg, B. H. , Cordero-Reyes, A. , Elias, B. , and Loebe, M. , 2015, “ A Review of Infections in Patients With Left Ventricular Assist Devices: Prevention, Diagnosis and Management,” Methodist DeBakey Cardiovasc. J., 11(1), pp. 28–32. [CrossRef] [PubMed]
Cheng, A. , Williamitis, C. A. , and Slaughter, M. S. , 2014, “ Comparison of Continuous-Flow and Pulsatile-Flow Left Ventricular Assist Devices: Is There an Advantage to Pulsatility?,” Ann. Cardiothorac. Surg., 3(6), pp. 573–581. [PubMed]
Vlodaver, Z. , Wilson, R. F. , and Garry, D. J. , 2012, Coronary Heart Disease: Clinical, Pathological, Imaging, and Molecular Profiles, Springer, New York.
Park, S. J. , Milano, C. A. , Tatooles, A. J. , Rogers, J. G. , Adamson, R. M. , Steidley, D. E. , Ewald, G. A. , Sundareswaran, K. S. , Farrar, D. J. , and Slaughter, M. S. , 2012, “ Outcomes in Advanced Heart Failure Patients With Left Ventricular Assist Devices for Destination Therapy,” Circ.: Heart Failure, 5(2), pp. 241–248. [CrossRef]
Jorde, U. P. , Khushwaha, S. S. , Tatooles, A. J. , Naka, Y. , Bhat, G. , Long, J. W. , Horstmanshof, D. , Kormos, R. L. , Teuteberg, J. J. , Slaughter, M. S. , Birks, E. J. , Farrar, D. J. , and Park, S. J. , 2013, “ Two-Year Outcomes in the Destination Therapy Post-FDA-Approval Study With a Continuous Flow Left Ventricular Assist Device: A Prospective Study Using the INTERMACS Registry,” J. Heart Lung Transplant., 32(Suppl. 4), p. S10. [CrossRef]
Frazier, O. H. , and Parnis, S. M. , 2014, “ Ventricular Assist Devices,” Textbook of Organ Transplantation, A. D. Kirk, S. J. Knechtle, C. P. Larsen, J. C. Madsen, T. C. Pearson, and S. A. Webber , eds., Wiley, Hoboken, NJ, pp. 554–562. [CrossRef]
Pagani, F. D. , 2008, “ Continuous-Flow Rotary Left Ventricular Assist Devices With ‘3rd Generation’ Design,” Semin. Thoracic Cardiovasc. Surg., 20(3), pp. 255–263. [CrossRef]
Morshuis, M. , El-Banayosy, A. , Arusoglu, L. , Koerfer, R. , Hetzer, R. , Wieselthaler, G. , Pavie, A. , and Nojiri, C. , 2009, “ European Experience of Duraheart™ Magnetically Levitated Centrifugal Left Ventricular Assist System,” Eur. J. Cardio-Thoracic Surg., 35(6), pp. 1020–1028. [CrossRef]
Zhou, M.-D. , Yang, C. , Liu, Z. , Cysyk, J. , and Zheng, S.-Y. , 2012, “ An Implantable Fabry-Pérot Pressure Sensor Fabricated on Left Ventricular Assist Device for Heart Failure,” Biomed. Microdevices, 14(1), pp. 235–245. [CrossRef] [PubMed]
Moscato, F. , Arabia, M. , Colacino, F. M. , Naiyanetr, P. , Danieli, G. A. , and Schima, H. , 2010, “ Left Ventricle Afterload Impedance Control by an Axial Flow Ventricular Assist Device: A Potential Tool for Ventricular Recovery,” Artif. Organs, 34(9), pp. 736–744. [CrossRef] [PubMed]
Tchantchaleishvili, V. , Sagebin, F. , Ross, R. E. , Hallinan, W. , Schwarz, K. Q. , and Massey, H. T. , 2014, “ Evaluation and Treatment of Pump Thrombosis and Hemolysis,” Ann. Cardiothorac. Surg., 3(5), pp. 490–495. [PubMed]
Givertz, M. M. , 2011, “ Ventricular Assist Devices: Important Information for Patients and Families,” Circulation, 124(12), pp. e305–e311. [CrossRef] [PubMed]
Molina, E. J. , and Boyce, S. W. , 2013, “ Current Status of Left Ventricular Assist Device Technology,” Semin. Thoracic Cardiovasc. Surg., 25(1), pp. 56–63. [CrossRef]
Wieselthaler, G. M. , Schima, H. , Hiesmayr, M. , Pacher, R. , Laufer, G. , Noon, G. P. , DeBakey, M. , and Wolner, E. , 2000, “ First Clinical Experience With the Debakey VAD Continuous-Axial-Flow Pump for Bridge to Transplantation,” Circulation, 101(4), pp. 356–359. [CrossRef] [PubMed]
Hoshi, H. , Shinshi, T. , and Takatani, S. , 2006, “ Third-Generation Blood Pumps With Mechanical Noncontact Magnetic Bearings,” Artif. Organs, 30(5), pp. 324–338. [CrossRef] [PubMed]
Chusri, Y. , Diloksumpan, P. , and Naiyanetr, P. , 2013, “ Current Left Ventricular Assist Device,” Sixth Biomedical Engineering International Conference (BMEiCON), Krabi, Thailand, Oct. 23–25, pp. 1–4.
Loforte, A. , Montalto, A. , Ranocchi, F. , Casali, G. , Luzi, G. , Monica, P. L. D. , Sbaraglia, F. , Polizzi, V. , Distefano, G. , and Musumeci, F. , 2009, “ Heartmate II Axial-Flow Left Ventricular Assist System: Management, Clinical Review and Personal Experience,” J. Cardiovasc. Med., 10(10), pp. 765–771. [CrossRef]
Giridharan, G. A. , Lee, T. J. , Ising, M. , Sobieski, M. A. , Koenig, S. C. , Gray, L. A. , and Slaughter, M. S. , 2012, “ Miniaturization of Mechanical Circulatory Support Systems,” Artif. Organs, 36(8), pp. 731–739. [CrossRef] [PubMed]
Timms, D. , 2011, “ A Review of Clinical Ventricular Assist Devices,” Med. Eng. Phys., 33(9), pp. 1041–1047. [CrossRef] [PubMed]
Farrar, D. , Bourque, K. , Reichenbach, S. , Muller, P. , and Peri, L. , 2014, “ Innovation Update,” Ventricular Assist Devices in Advanced-Stage Heart Failure, S. Kyo , ed., Springer, Tokyo, Japan, pp. 131–142. [CrossRef]
Estep, J. D. , Chang, S. M. , Bhimaraj, A. , Torre-Amione, G. , Zoghbi, W. A. , and Nagueh, S. F. , 2012, “ Imaging for Ventricular Function and Myocardial Recovery on Nonpulsatile Ventricular Assist Devices,” Circulation, 125(18), pp. 2265–2277. [CrossRef] [PubMed]
John, R. , Naka, Y. , Smedira, N. G. , Starling, R. , Jorde, U. , Eckman, P. , Farrar, D. J. , and Pagani, F. D. , 2011, “ Continuous Flow Left Ventricular Assist Device Outcomes in Commercial Use Compared With the Prior Clinical Trial,” Ann. Thoracic Surg., 92(4), pp. 1406–1413. [CrossRef]
Bogaev, R. , Delgado, R. , Taegtmeyer, H. , and Frazier, O. H. , 2011, “ Circulatory Assist Device in Heart Failure,” Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine, B. Robert, M. Douglas, Z. Douglas, and L. Peter , eds., Elsevier—Health Sciences Division, Philadelphia, PA, pp. 818–833. [CrossRef]
Abiomed, 2010, “ Impella® LD With the Impella® Console Instructions for Use & Clinical Reference Manual,” Abiomed, Inc., Danvers, MA.
THI, 2016, “ Tandemheart pVAD,” Texas Heart Institute, Houston, TX, accessed Nov. 29, 2016, http://www.texasheart.org/Research/Devices/tandemheart.cfm
Kar, B. , Adkins, L. E. , Civitello, A. B. , Loyalka, P. , Palanichamy, N. , Gemmato, C. J. , Myers, T. J. , Gregoric, I. D. , and Delgado, R. M. , 2006, “ Clinical Experience With the Tandemheart® Percutaneous Ventricular Assist Device,” Tex. Heart Inst. J., 33(2), pp. 111–115. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1524679/ [PubMed]
Klein, A. A. , Lewis, C. J. , and Madsen, J. C. , 2011, Organ Transplantation: A Clinical Guide, Cambridge University Press, New York. [CrossRef]
Gross, D. R. , 1999, “ Concerning Thromboembolism Associated With Left Ventricular Assist Devices,” Cardiovasc. Res., 42(1), pp. 45–47. [CrossRef] [PubMed]
Rigatelli, G. , Santini, F. , and Faggian, G. , 2012, “ Past and Present of Cardiocirculatory Assist Devices: A Comprehensive Critical Review,” J. Geriatr. Cardiol., 9(4), pp. 389–400. [PubMed]
Anstadt, M. P. , Bartlett, R. L. , Malone, J. P. , Brown, G. R. , Martin, S. , Nolan, D. J. , Oberheu, K. H. , and Anstadt, G. L. , 1991, “ Direct Mechanical Ventricular Actuation for Cardiac Arrest in Humans: A Clinical Feasibility Trial,” Chest, 100(1), pp. 86–92. [CrossRef] [PubMed]
Mau, J. , Menzie, S. , Huang, Y. , Ward, M. , and Hunyor, S. , 2011, “ Nonsurround, Nonuniform, Biventricular-Capable Direct Cardiac Compression Provides Frank-Starling Recruitment Independent of Left Ventricular Septal Damage,” J. Thoracic Cardiovasc. Surg., 142(1), pp. 209–215. [CrossRef]
Abiomed, 2014, “ Abiocor® Implantable Replacement Heart Instructions for Use,” Abiomed, Inc., Danvers, MA, accessed Dec. 19, 2014, https://www.fda.gov/ohrms/dockets/ac/05/briefing/2005-4149b2_01_ABIOMED%20INSTRUCTIONS%20FOR%20USE.pdf
Boccaccio, A. , Carbone, C. , Galietti, U. , Mastropasqua, F. , and Pappalettere, C. , 2011, “ A Novel Electro-Mechanical Ventricular Assist Device for Refractory Cardiac Insufficiency,” IEEE International Workshop on Medical Measurements and Applications (MeMeA), Bari, Italy, May 30–31, pp. 221–224.
Starling, R. C. , and Jessup, M. , 2004, “ Worldwide Clinical Experience With the Corcap™ Cardiac Support Device,” J. Card. Failure, 10(Suppl. 6), pp. S225–S233. [CrossRef]
Trumble, D. R. , McGregor, W. E. , Kerckhoffs, R. C. P. , and Waldman, L. K. , 2011, “ Cardiac Assist With a Twist: Apical Torsion as a Means to Improve Failing Heart Function,” ASME J. Biomech. Eng., 133(10), p. 101003. [CrossRef]
Sales, V. , and McCarthy, P. , 2010, “ Understanding the C-Pulse Device and Its Potential to Treat Heart Failure,” Curr. Heart Failure Rep., 7(1), pp. 27–34. [CrossRef]
Lowe, J. E. , Anstadt, M. P. , Van Trigt, P. , Smith, P. K. , Hendry, P. J. , Plunkett, M. D. , and Anstadt, G. L. , 1991, “ First Successful Bridge to Cardiac Transplantation Using Direct Mechanical Ventricular Actuation,” Ann. Thoracic Surg., 52(6), pp. 1237–1245. [CrossRef]
Anstadt, M. P. , Anstadt, G. L. , and Lowe, J. E. , 1991, “ Direct Mechanical Ventricular Actuation: A Review,” Resuscitation, 21(1), pp. 7–23. [CrossRef] [PubMed]
Criscione, J. C. , Biswas, S. , Hall, S. , Harrison, L. , and Robbins, D. , 2011, “ Device for the Modulation of Cardiac End Diastolic Volume,” The Texas A&M University System/Corinnova Incorporated, College Station, TX/Houston, TX, U.S. Patent No. US7871366 B2 http://www.google.com/patents/US7871366.
Blom, A. , Pilla, J. , Gorman, R., III , Gorman, J. , Mukherjee, R. , Spinale, F. , and Acker, M. , 2005, “ Infarct Size Reduction and Attenuation of Global Left Ventricular Remodeling With the CorCapTM Cardiac Support Device Following Acute Myocardial Infarction in Sheep,” Heart Failure Rev., 10(2), pp. 125–139. [CrossRef]
Konertz, W. F. , Shapland, J. E. , Hotz, H. , Dushe, S. , Braun, J. P. , Stantke, K. , and Kleber, F. X. , 2001, “ Passive Containment and Reverse Remodeling by a Novel Textile Cardiac Support Device,” Circulation, 104(Suppl. 1), pp. I-270–I-275. [CrossRef]
Morsi, Y. S. , 2014, “ Bioengineering Strategies for Polymeric Scaffold for Tissue Engineering an Aortic Heart Valve: An Update,” Int. J. Artif. Organs, 37(9), pp. 651–667. [CrossRef] [PubMed]
Brown, M. A. , Iyer, R. K. , and Radisic, M. , 2008, “ Pulsatile Perfusion Bioreactor for Cardiac Tissue Engineering,” Biotechnol. Prog., 24(4), pp. 907–920. [CrossRef] [PubMed]
Yildirim, Y. , Naito, H. , Didié, M. , Karikkineth, B. C. , Biermann, D. , Eschenhagen, T. , and Zimmermann, W.-H. , 2007, “ Development of a Biological Ventricular Assist Device: Preliminary Data From a Small Animal Model,” Circulation, 116(Suppl. 11), pp. I-16–I-23.
Reis, L. A. , Chiu, L. L. Y. , Feric, N. , Fu, L. , and Radisic, M. , 2016, “ Biomaterials in Myocardial Tissue Engineering,” J. Tissue Eng. Regener. Med., 10(1), pp. 11–28. [CrossRef]
Krishna, K. A. , Krishna, K. S. , Berrocal, R. , Rao, K. S. , and Sambasiva Rao, K. R. S. , 2011, “ Myocardial Infarction and Stem Cells,” J. Pharm. Bioallied Sci., 3(2), pp. 182–188. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

A schematic illustration of the different categories of VADs

Grahic Jump Location
Fig. 2

A schematic illustration of different types of pump impellers used in the construction of continuous flow pumps

Grahic Jump Location
Fig. 3

Schematic illustration of a catheter-mounted VAD (a) Impella 2.5, CP, 5.0 and Thoratec PHP, (b) Impella LD

Grahic Jump Location
Fig. 4

Placement of TandemHeart™ [35], photo courtesy of the Texas Heart Institute website.2 We acknowledge them for providing the photo.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In