Research Papers

Replication and Substitution of Anatomic Stabilizing Mechanisms in a Total Knee Design

[+] Author and Article Information
Peter S. Walker

Department of Orthopaedics,
Hospital for Joint Diseases,
New York University Langone Medical Center,
301 East 17th Street,
New York, NY 10003
e-mail: Peter.walker@nyumc.org

Ilya Borukhov

Department of Orthopaedics,
Hospital for Joint Diseases,
New York University Langone Medical Center,
301 East 17th Street,
New York, NY 10003

1Corresponding author.

Manuscript received April 14, 2017; final manuscript received June 22, 2017; published online September 22, 2017. Assoc. Editor: Rita M. Patterson.

J. Med. Devices 11(4), 041005 (Sep 22, 2017) (5 pages) Paper No: MED-17-1205; doi: 10.1115/1.4037261 History: Received April 14, 2017; Revised June 22, 2017

While the majority of the total knees used today are of the cruciate retaining (CR) and cruciate substituting (PS) types, the results are not ideal in terms of satisfaction, function, and biomechanical parameters. It is proposed that a design which specifically substituted for the structures which provided stability could produce normal laxity behavior, which may be a path forward to improved outcomes. Stabilizing structures of the anatomic knee were identified under conditions of low and high axial loading. The upward slope of the anterior medial tibial plateau and the anterior cruciate was particularly important under all loading conditions. A guided motion design was formulated based on this data, and then tested in a simulating machine which performed an enhanced ASTM constraint test to determine stability and laxity. The guided motion design showed much closer neutral path of motion and laxity in anterior–posterior (AP) and internal–external rotation, compared with the PS design. Particular features included absence of paradoxical anterior sliding in early flexion, and lateral rollback in higher flexion. A total knee design which replicated the stabilizing structures of the anatomical knee is likely to provide more anatomical motion and may result in improved clinical outcomes.

Copyright © 2017 by ASME
Topics: Design , Knee
Your Session has timed out. Please sign back in to continue.


Lozano-Calderon, S. A. , Shen, J. , Doumato, D. F. , Greene, D. A. , and Zelicof, S. B. , 2013, “ Cruciate-Retaining vs Posterior-Substituting Inserts in Total Knee Arthroplasty: Functional Outcome Comparison,” J. Arthroplasty, 28(2), pp. 234–242. [CrossRef] [PubMed]
Maratt, J. D. , Lee, Y. , Lyman, S. , and Westrich, G. H. , 2015, “ Predictors of Satisfaction Following Total Knee Arthroplasty,” J. Arthroplasty, 30(7), pp. 1142–1145. [CrossRef] [PubMed]
Dennis, D. A. , Komistek, R. D. , Mahfouz, M. R. , Haas, B. D. , and Stiehl, J. B. , 2003, “ Multicenter Determination of In Vivo Kinematics After Total Knee Arthroplasty,” Clin. Orthop. Relat. Res., 416, pp. 37–57. [CrossRef]
Yue, B. , Varadarajan, K. M. , Moynihan, A. L. , Liu, F. , Rubash, H. E. , and Li, G. , 2011, “ Kinematics of Medial Osteoarthritic Knees Before and After Posterior Cruciate Ligament Retaining Total Knee Arthroplasty,” J. Orthop. Res., 29(1), pp. 40–46. [CrossRef] [PubMed]
McClelland, A. , Feller, J. A. , Menz, H. B. , and Webster, H. B. , 2014, “ Patterns in the Knee Flexion-Extension Moment Profile During Stair Ascent and Descent in Patients With Total Knee Arthroplasty,” J. Biomech., 47(8), pp. 1816–1821. [CrossRef] [PubMed]
McClelland, J. A. , Webster, K. , Feller, J. A. , and Menz, H. B. , 2010, “ Knee Kinetics During Walking at Different Speeds in People Who Have Undergone Total Knee Replacement,” Gait Posture, 32(2), pp. 205–210. [CrossRef] [PubMed]
Nakamura, S. , Sharma, A. , Nakamura, K. , Ikeda, N. , Zingde, S. M. , and Komistek, R. D. , 2014, “ Can Post-Cam Function be Replaced by Addition of a Third Condyle in PS TKA,” J. Arthroplasty, 29(9), pp. 1871–1876. [CrossRef] [PubMed]
Pritchett, J. W. , 2013, “ A Comparison of the Noise Generated From Different Types of Knee Prostheses,” J. Knee Surg., 26(2), pp. 101–104. [PubMed]
Pritchett, J. W. , 2011, “ Patients Prefer a Bicruciate-Retaining or the Medial Pivot Total Knee Prosthesis,” J. Arthoplasty, 26(2), pp. 224–228. [CrossRef]
Zuiderbaan, H. A. , van der List, J. P. , Khamaisy, S. , Nawabi, D. H. , Thein, R. , Ishmael, C. , Paul, S. , and Pearle, A. D. , 2017, “ Unicompartmental Knee Arthroplasty Versus Total Knee Arthroplasty: Which Type of Artificial Joint do Patients Forget?” Knee Surg. Sports Traumatol. Arthrosc., 25(3), pp. 681–686.
Blaha, J. D. , “ The Rationale for a Total Knee Implant That Confers Anteroposterior Stability Throughout Range of Motion,” J. Arthroplasty, 19(4 Suppl. 1), pp. 22–26. [PubMed]
Hofmann, A. A. , Tkach, T. K. , Evanich, C. J. , and Camargo, M. P. , 2000, “ Posterior Stabilization in Total Knee Arthroplasty With Use of an Ultracongruent Polyethylene Insert,” J. Arthroplasty, 15(5), pp. 576–583. [CrossRef] [PubMed]
Hsieh, H. H. , and Walker, P. S. , 1976, “ Stabilizing Mechanisms of the Loaded and Unloaded Knee Joint,” Am. J. Bone Jt. Surg., 58(1), pp. 87–93. [CrossRef]
Markolf, K. , Graff-Radford, A. , and Amstutz, H. , 1978, “ In Vivo Knee Stability. A Quantitative Assessment Using an Instrumented Clinical Testing Apparatus,” Am. J. Bone Jt. Surg., 60-A, pp. 664–674. [CrossRef]
Shoemaker, S. C. , and Markolf, K. L. , 1985, “ Effects of Joint Load on the Stiffness and Laxity of Ligament-Deficient Knees,” J. Bone Jt. Surg., 67(1), pp. 136–146. [CrossRef]
Wang, C. J. , and Walker, P. S. , 1974, “ Rotatory Laxity of the Human Knee Joint,” Am. J. Bone Jt. Surg., 56(1), pp. 161–170. [CrossRef]
Beynonn, B. D. , Fleming, B. C. , Labovitch, R. , and Parsons, B. , 2002, “ Chronic Anterior Cruciate Ligament Deficiency is Associated With Increased Anterior Translation of the Tibia During the Transition From Non-Weightbearing to Weightbearing,” J. Orthop. Res., 20(2), pp. 332–337. [CrossRef] [PubMed]
Markolf, K. , Graff-Radford, A. , and Amstutz, H. , 1978, “ In Vivo Knee Stability. A Quantitative Assessment Using an Instrumented Clinical Testing Apparatus,” Am. J. Bone Jt. Surg., 60-A(5), pp. 664–674. [CrossRef]
Pinskerova, V. , Johal, P. , Nakagawa, S. , Sosna, A. , Williams, A. , Gedroyc, W. , and Freeman, M. A. , 2004, “ Does the Femur Roll-Back With Flexion?” Br. J. Bone Jt. Surg., 86B(6), pp. 925–931. [CrossRef]
Giffin, J. R. , Stabile, K. J. , Zantop, T. , Vogrin, T. M. , Woo, S. L.-Y. , and Harner, C. D. , 2007, “ Importance of Tibial Slope for Stability of the Posterior Cruciate Ligament-Deficient Knee,” Am. J. Sports Med., 35(9), pp. 1443–1449. [CrossRef] [PubMed]
Giffin, J. R. , Vogrin, T. M. , Zantop, T. , Woo, S. L.-Y. , and Harner, C. D. , 2004, “ Effects of Increasing Tibial Slope on the Biomechanics of the Knee,” Am. J. Sports Med., 32(2), pp. 376–382. [CrossRef] [PubMed]
Reynolds, R. J. , Walker, P. S. , and Buza, J. , 2017, “ Mechanism of Anterior-Posterior Stability of the Knee Joint Under Load-Bearing,” J. Biomech., 57, pp. 39–45. [CrossRef] [PubMed]
Lankester, B. J. A. , Cottam, H. L. , Pinskerova, V. , Eldridge, J. D. J. , and Freeman, M. A. , 2008, “ Variation in the Anatomy of the Tibial Plateau,” Bone Jt. J., 90-B(3), pp. 330–333. [CrossRef]
Walker, P. S. , and Sathasivam, P. S. , 1999, “ The Design of Guide Surfaces for Fixed-Bearing and Mobile-Bearing Knee Replacements,” J. Biomech., 32(1), pp. 27–34. [CrossRef] [PubMed]
Walker, P. S. , 2014, “ Application of a Novel Design Method for Knee Replacements to Achieve Normal Mechanics,” Knee, 21(2), pp. 353–358. [CrossRef] [PubMed]
Chan, H. Y. , Walker, P. S. , Lerner, A. , Chaudhary, M. , and Bosco, J. A. , 2016, “ Design of Reverse Materials Resurfacing Implants for Mild-Moderate Medial Osteoarthritis of the Knee,” ASME J. Med. Devices, 11(1), p. 011004. [CrossRef]
Walker, P. S. , Arno, S. , Borukhov, I. , and Bell, C. P. , 2015, “ Characterising Knee Motion and Laxity in a Testing Machine for Application to Total Knee Evaluation,” J. Biomech., 48(13), pp. 3551–3558. [CrossRef] [PubMed]
Gustke, K. A. , 2014, “ Soft-Tissue and Alignment Correction: The Use of Smart Trials in Total Knee Replacement,” Bone Jt. J., 96-B(11 Suppl. A), pp. 78–83. [CrossRef]
Meere, P. A. , Schneider, S. , and Walker, P. S. , 2016, “ Accuracy of Balancing at Total Knee Surgery Using an Instrumented Tibial Trial,” J. Arthroplasty, 31(9), pp. 1938–1942. [CrossRef] [PubMed]
Butler, D. L. , Kay, M. D. , and Stouffer, C. , 1986, “ Comparison of Material Properties in Fascicle-Bone Units From Human Patellar Tendon and Knee Ligaments,” J. Biomech., 19(6), pp. 425–432. [CrossRef] [PubMed]
Otake, N. , Chen, H. , Yao, X. , and Shoumura, S. , 2007, “ Morphologic Study of the Lateral and Medial Collateral Ligaments of the Human Knee,” Okajimas Folia Anat. Jpn., 83(4), pp. 115–122. [CrossRef] [PubMed]
Bergmann, G. , Bender, A. , Graichen, F. , Dymke, J. , Rohlmann, A. , Trepczynski, A. , Heller, M. O. , and Kutzner, I. , 2014, “ Standardized Loads Acting in Knee Implants,” PLOS ONE, 9(1), p. e86035. [CrossRef] [PubMed]
D'Lima, D. D. , Patil, S. , Steklov, N. , Chien, S. , and Colwell, C. W., Jr. , “ In Vivo Knee Moments and Shear After Total Knee Arthroplasty,” J. Biomech., 40(Suppl. 1), pp. S11–S17. [PubMed]
ASTM, 2008, “ Determination of Total Knee Replacement Constraint,” ASTM International, West Conshohocken, PA, Standard No. ASTM F1223-05. https://www.astm.org/DATABASE.CART/HISTORICAL/F1223-05.htm
Blaha, J. D. , Mancinelli, C. A. , Simons, W. H. , Kish, V. L. , and Thyagarajan, G. , 2003, “ Kinematics of the Human Knee Using an Open Chain Cadaver Model,” Clin. Orthop. Relat. Res., 410, pp. 25–34. [CrossRef]
Fitch, D. , Sedacki, K. , and Yang, Y. , 2014, “ Mid- to Long-Term Outcomes of a Medial-Pivot System for Primary Total Knee Replacement: A Systematic Review and Meta-Analysis,” Bone Joint Res., 3(10), pp. 297–304. [CrossRef] [PubMed]
Fritzsche, H. , Beyer, F. , Postler, A. , and Lutzner, J. , 2017, “ Different Intraoperative Kinematics, Stability, and Range of Motion Between Cruciate-Substituting Ultracongruent and Posterior-Stabilized Total Knee Arthroplasty,” Knee Surg. Sports Traumatol. Arthrosc., epub.
Lutzner, J. , Beyer, F. , Dexel, J. , Fritzsche, H. , Lutzner, C. , and Kirschner, S. , 2016, “ No Difference in Range of Motion Between Ultracongruent and Posterior Stabilized Design in Total Knee Arthroplasty: A Randomized Controlled Trial,” Knee Surg. Sports Traumatol. Arthrosc., epub.
Rajgopal, A. , Aggarwal, K. , Khurana, A. , Rao, A. , Vasdev, A. , and Pandit, H. , 2017, “ Gait Parameters and Functional Outcomes After Total Knee Arthroplasty Using Persona Knee System With Cruciate Retaining and Ultracongruent Knee Inserts,” J. Arthroplasty, 32(1), pp. 87–91. [CrossRef] [PubMed]
Seedhom, B. B. , Longton, E. B. , Wright, V. , and Dowson, D. , 1972, “ Dimensions of the Knee,” Ann. Rheum. Dis., 31(1), pp. 54–58. [CrossRef] [PubMed]
Amiri, S. , Cooke, D. T. , Kim, I. Y. , and Wyss, U. , 2006, “ Mechanics of the Passive Knee Joint. Part 1: The Role of the Tibial Articular Surfaces in Guiding the Passive Motion,” Proc. Inst. Mech. Eng., 220(8), pp. 813–822. [CrossRef]
Amiri, S. , Cooke, D. T. , Kim, I. Y. , and Wyss, U. , 2007, “ Mechanics of the Passive Knee Joint. Part 2: Interaction Between the Ligaments and the Articular Surfaces in Guiding the Joint Motion,” Proc. Inst. Mech. Eng., 221(8), pp. 821–832. [CrossRef]
Amiri, S. , Cooke, D. T. , and Wyss, U. P. , 2011, “ Conceptual Design for Condylar Guiding Features of a Total Knee Replacement,” ASME J. Med. Devices, 5(2), p. 025001. [CrossRef]
Liu, Y.-L. , Chen, W.-C. , Yeh, W. L. , McClean, C. J. , Huang, C. H. , Lin, K. J. , and Cheng, C. K. , 2012, “ Mimicking Anatomical Condylar Configuration Into Knee Prosthesis Could Improve Knee Kinematics After TKA—A Computational Simulation,” Clin. Biomech., 27(2), pp. 176–181. [CrossRef]
Floerkemeier, T. , Fosch, K. H. , Wachowski, M. , Kubein-Meesenburg, D. , Gezzu, R. , Faghanel, J. , Sturmer, K. M. , and Nagerl, H. , 2011, “ Physiologically Shaped Knee Arthroplasty Induces Natural Roll-Back,” Technol. Health Care, 19(2), pp. 91–102. [PubMed]
Mangudi, K. , Varadarajan, M. , Zumbrunn, T. , Rubash, H. E. , Malchau, H. , Li, G. , and Muratoglu, O. K. , 2015, “ Cruciate Retaining Implant With Biometric Articular Surface to Reproduce Activity Dependent Kinematics of the Normal Knee,” J. Arthroplasty, 30(12), pp. 2149–2153. [CrossRef] [PubMed]
Zumbrunn, T. Z. , Varadarajan, K. M. , Rubash, H. E. , Malchau, H. , Li, G. , and Muratoglu, O. K. , 2015, “ Regaining Native Knee Kinematics Following Joint Arthroplasty: A Novel Biomimetic Design With ACL and PCL Preservation,” J. Arthroplasty, 30(12), pp. 2143–2148. [CrossRef] [PubMed]
Fitzpatrick, C. K. , Clary, C. W. , and Rullkoetter, P. J. , 2012, “ The Role of Patient, Surgical, and Implant Design Variation in Total Knee Replacement Performance,” J. Biomech., 45(12), pp. 2092–2102. [CrossRef] [PubMed]
Smoger, L. M. , Fitzpatrick, C. K. , Clary, C. W. , Cyr, A. J. , Maletsky, L. P. , Rullkoetter, P. J. , and Laz, P. J. , 2015, “ Statistical Modeling to Characterize Relationships Between Knee Anatomy and Kinematics,” J. Orthop. Res., 33(11), pp. 1620–1630. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Design of the replica-guided motion knee with three separate bearing surfaces, lateral, medial, and intercondylar. In combination, the bearings are intended to replicate the stabilizing mechanisms of the anatomic knee.

Grahic Jump Location
Fig. 2

Sections through the femoral and tibial bearing surfaces; lateral, intercondylar, and medial; at different flexion angles. The changing contact points with flexion are shown. The sequence is the intended neutral path of motion for only an axial compressive force acting.

Grahic Jump Location
Fig. 3

The models of the two total knee designs, made in a polymeric material by 3D printing, which were tested for kinematics in the knee testing machine

Grahic Jump Location
Fig. 4

The knee testing machine used for the kinematic analysis. The test total knee components were 3D printed and mounted on 3D printed bones. A metal rod AX was fixed in line with the circular axis of the femur. AC, axial compression forces; ST, horizontal forces to apply shear or torque to the femur. The medial collateral ligament (MCL) and lateral collateral ligament (LCL) consisted of elastic cables anatomically positioned and pretensioned to 75 N. FL, femur flexed using cables; T, targets to track motion with digital camera.

Grahic Jump Location
Fig. 5

The neutral path of motion and the laxity about the neutral path, plotted against angle of flexion. The anatomic data is the benchmark against which the PS knee and the replica guided motion knees were compared. The fine dashed horizontal line is the “corrected” neutral path curve of the lowest point on the medial femoral condyle. The overhead images show the locations of the femoral circular axis for discrete flexion angles, together with the femoral–tibial contact patches.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In