Research Papers

A Shape Memory Alloy-Based Compression Therapy Prototype Tested With Individuals in Seated Position

[+] Author and Article Information
Hadi Moein

MENRVA Research Group,
Schools of Mechatronic Systems Engineering
and Engineering Science,
Simon Fraser University,
Metro Vancouver,
Burnaby, BC V5A-1S6, Canada
e-mail: hmoein@sfu.ca

Alex Wu

MENRVA Research Group,
Schools of Mechatronic Systems Engineering
and Engineering Science,
Simon Fraser University,
Metro Vancouver,
Burnaby, BC V5A-1S6, Canada
e-mail: wualexw@sfu.ca

Carlo Menon

MENRVA Research Group,
Schools of Mechatronic Systems Engineering
and Engineering Science,
Simon Fraser University,
Metro Vancouver,
Burnaby, BC V5A-1S6, Canada
e-mail: cmenon@sfu.ca

Manuscript received September 1, 2016; final manuscript received July 26, 2017; published online August 16, 2017. Assoc. Editor: Elizabeth Hsiao-Wecksler.

J. Med. Devices 11(4), 041002 (Aug 16, 2017) (10 pages) Paper No: MED-16-1312; doi: 10.1115/1.4037441 History: Received September 01, 2016; Revised July 26, 2017

Orthostatic intolerance in patients can occur secondary to concomitant venous pooling and enhanced capillary filtration when standing upright, and is one of the principle causes of syncope or fainting. Compression therapy is commonly recommended for the management of syncope based on the assumption that it increases venous return. Technologies currently used include compression stockings, whose efficacy has, however, been challenged, and intermittent pneumatic pressure devices, which highly restrict the patients' mobility. This paper therefore investigates a novel active compression brace (ACB), which could potentially provide intermittent pressure while not restricting movements. The ACB, actuated by shape memory alloy (SMA) wires, in this work was tested with twelve healthy individuals in a seated position. The experimental observation showed that the ACB can apply a constant initial pressure to the leg similar to commercial compression stockings and also produce intermittent pressure exceeding 30 mmHg. A comparison between analytical and experimental results showed a maximum of 2.08 mmHg absolute averaged difference among all the participants. A correlation analysis showed that the normalized root-mean-square deviation (NRMSD) between the experimental and analytical results had a significant negative correlation with the estimated total calf circumference minus the calf fat cross-sectional area (CSA). A calibration formula, accounting for fat and circumference of the leg, was introduced to account for these two parameters. The comfort of the ACB was also compared to two other available compression devices using questionnaires. No participants reported discomfort in terms of pressure, skin irritation, or heat generated by the ACB.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Hainsworth, R. , 2004, “ Pathophysiology of Syncope,” Clin. Auton. Res., 14(1), pp. i18–i24. [CrossRef]
Lewis, T. , 1932, “ A Lecture on Vasovagal Syncope and the Carotid Sinus Mechanism,” Br. Med. J., 1(873), p. 3723.
Moya, A. , Sutton, R. , Ammirati, F. , Blanc, J.-J. , Brignole, M. , Dahm, J. B. , Deharo, J.-C. , Gajek, J. , Gjesdal, K. , and Krahn, A. , 2009, “ Guidelines for the Diagnosis and Management of Syncope (Version 2009),” Eur. Heart J., 30(21), pp. 2631–2671. [CrossRef] [PubMed]
Freeman, R. , Wieling, W. , Axelrod, F. B. , Benditt, D. G. , Benarroch, E. , Biaggioni, I. , Cheshire, W. P. , Chelimsky, T. , Cortelli, P. , and Gibbons, C. H. , 2011, “ Consensus Statement on the Definition of Orthostatic Hypotension, Neurally Mediated Syncope and the Postural Tachycardia Syndrome,” Clin. Auton. Res., 21(2), pp. 69–72. [CrossRef] [PubMed]
Naschitz, J. E. , and Rosner, I. , 2007, “ Orthostatic Hypotension: Framework of the Syndrome,” Postgrad. Med. J., 83, pp. 568–574. [CrossRef] [PubMed]
Atkins, D. , Hanusa, B. , Sefcik, T. , and Kapoor, W. , 1991, “ Syncope and Orthostatic Hypotension,” Am. J. Med., 91(2), pp. 179–185. [CrossRef] [PubMed]
Feldstein, C. , and Weder, A. B. , 2012, “ Orthostatic Hypotension: A Common, Serious and Underrecognized Problem in Hospitalized Patients,” J. Am. Soc. Hypertens., 6(1), pp. 27–39. [CrossRef] [PubMed]
Smit, A. A. , Wieling, W. , Fujimura, J. , Denq, J. C. , Opfer-Gehrking, T. L. , Akarriou, M. , Karemaker, J. M. , and Low, P. A. , 2004, “ Use of Lower Abdominal Compression to Combat Orthostatic Hypotension in Patients With Autonomic Dysfunction,” Clin. Auton. Res., 14(3), pp. 167–175. [CrossRef] [PubMed]
Privett, S. E. , George, K. P. , Whyte, G. P. , and Cable, N. T. , 2010, “ The Effectiveness of Compression Garments and Lower Limb Exercise on Post-Exercise Blood Pressure Regulation in Orthostatically Intolerant Athletes,” Clin. J. Sport Med., 20(5), pp. 362–367. [CrossRef] [PubMed]
Stenger, M. B. , Brown, A. K. , Lee, S. , Locke, J. P. , and Platts, S. H. , 2010, “ Gradient Compression Garments as a Countermeasure to Post-Spaceflight Orthostatic Intolerance,” Aviat. Space Environ. Med., 81(9), pp. 883–887. [CrossRef] [PubMed]
Podoleanu, C. , Maggi, R. , Brignole, M. , Croci, F. , Incze, A. , Solano, A. , Puggioni, E. , and Carasca, E. , 2006, “ Lower Limb and Abdominal Compression Bandages Prevent Progressive Orthostatic Hypotension in Elderly Persons: A Randomized Single-Blind Controlled Study,” J. Am. Coll. Cardiol., 48(7), pp. 1425–1432. [CrossRef] [PubMed]
Partsch, H. , 1991, “ Compression Therapy of the Legs,” J. Dermatol. Surg. Oncol., 17(10), pp. 799–805. [CrossRef] [PubMed]
Rabe, E. , Hertel, S. , Bock, E. , Hoffmann, B. , Jöckel, K. , and Pannier, F. , 2013, “ Therapy With Compression Stockings in Germany—Results From the Bonn Vein Studies,” J. Dtsch. Dermatologischen Ges., 11(3), pp. 257–261.
Partsch, H. , 2012, “ Compression Therapy: Clinical and Experimental Evidence,” Ann. Vasc. Dis., 5(4), pp. 416–422. [CrossRef] [PubMed]
Partsch, H. , Rabe, E. , and Stemmer, R. , 2000, Compression Therapy of the Extremities, Éditions Phlébologiques Françaises, Levallois-Perret, France.
Harding, K. G. , Vanscheidt, W. , Partsch, H. , Caprini, J. A. , and Comerota, A. J. , 2014, “ Adaptive Compression Therapy for Venous Leg Ulcers: A Clinically Effective, Patient‐Centred Approach,” Int. Wound J., 13(3), pp. 317–325. [CrossRef] [PubMed]
Dolibog, P. , Franek, A. , Taradaj, J. , Dolibog, P. , Blaszczak, E. , Polak, A. , Brzezinska-Wcislo, L. , Hrycek, A. , Urbanek, T. , and Ziaja, J. , 2014, “ A Comparative Clinical Study on Five Types of Compression Therapy in Patients With Venous Leg Ulcers,” Int. J. Med. Sci., 11(1), pp. 34–43. [CrossRef] [PubMed]
Iwama, H. , Suzuki, M. , Hojo, M. , Kaneda, M. , and Akutsu, I. , 2000, “ Intermittent Pneumatic Compression on the Calf Improves Peripheral Circulation of the Leg,” J. Crit. Care, 15(1), pp. 18–21. [CrossRef] [PubMed]
Dolibog, P. , Franek, A. , Taradaj, J. , Polak, A. , Dolibog, P. , Blaszczak, E. , Wcislo, L. , Hrycek, A. , Urbanek, T. , and Ziaja, J. , 2013, “ A Randomized, Controlled Clinical Pilot Study Comparing Three Types of Compression Therapy to Treat Venous Leg Ulcers in Patients With Superficial and/or Segmental Deep Venous Reflux,” Ostomy Wound Manage., 59(8), pp. 22–30. https://www.researchgate.net/publication/255735386_A_Randomized_Controlled_Clinical_Pilot_Study_Comparing_Three_Types_of_Compression_Therapy_to_Treat_Venous_Leg_Ulcers_in_Patients_with_Superficial_andor_Segmental_Deep_Venous_Reflux [PubMed]
Feldman, J. L. , Stout, N. L. , Wanchai, A. , Stewart, B. R. , Cormier, J. N. , and Armer, J. M. , 2012, “ Intermittent Pneumatic Compression Therapy: A Systematic Review,” Lymphology, 45(1), pp. 13–25. https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&ved=0ahUKEwifg5CC1MnVAhUL84MKHV6NDogQFghEMAU&url=https%3A%2F%2Fjournals.uair.arizona.edu%2Findex.php%2Flymph%2Farticle%2Fdownload%2F16987%2F16783&usg=AFQjCNFpeTAn428wuEBIJM0fDRt1YlDiDw [PubMed]
Willenberg, T. , Lun, B. , Amsler, F. , and Baumgartner, I. , 2010, “ Ease of Application of Medical Compression-Stocking Systems for the Treatment of Venous Ulcers,” Eur. J. Vasc. Endovascular Surg., 40(1), pp. 129–133. [CrossRef]
Jones, N. , Webb, P. , Rees, R. , and Kakkar, V. , 1980, “ A Physiological Study of Elastic Compression Stockings in Venous Disorders of the Leg,” Br. J. Surg., 67(8), pp. 569–572. [CrossRef] [PubMed]
Mosti, G. , and Partsch, H. , 2013, “ Bandages or Double Stockings for the Initial Therapy of Venous Oedema? A Randomized, Controlled Pilot Study,” Eur. J. Vasc. Endovascular Surg., 46(1), pp. 142–148. [CrossRef]
Protheroe, C. L. , Dikareva, A. , Menon, C. , and Claydon, V. E. , 2011, “ Are Compression Stockings an Effective Treatment for Orthostatic Presyncope?,” PloS One, 6(12), p. e28193. [CrossRef] [PubMed]
Kalodiki, E. , and Giannoukas, A. , 2007, “ Intermittent Pneumatic Compression (IPC) in the Treatment of Peripheral Arterial Occlusive Disease (PAOD)—A Useful Tool or Just Another Device?,” Eur. J. Vasc. Endovascular Surg., 33(3), pp. 309–310. [CrossRef]
Killewich, L. A. , Sandager, G. P. , Nguyen, A. H. , Lilly, M. P. , and Flinn, W. R. , 1995, “ Venous Hemodynamics During Impulse Foot Pumping,” J. Vasc. Surg., 22(5), pp. 598–605. [CrossRef] [PubMed]
Delis, K. , Slimani, G. , Hafez, H. , and Nicolaides, A. , 2000, “ Enhancing Venous Outflow in the Lower Limb With Intermittent Pneumatic Compression. A Comparative Haemodynamic Analysis on the Effect of Foot vs. Calf vs. Foot and Calf Compression,” Eur. J. Vasc. Endovascular Surg., 19(3), pp. 250–260. [CrossRef]
Delis, K. , Azizi, Z. , Stevens, R. , Wolfe, J. , and Nicolaides, A. , 2000, “ Optimum Intermittent Pneumatic Compression Stimulus for Lower-Limb Venous Emptying,” Eur. J. Vasc. Endovascular Surg., 19(3), pp. 261–269. [CrossRef]
Moein, H. , and Menon, C. , 2014, “ An Active Compression Bandage Based on Shape Memory Alloys: A Preliminary Investigation,” Biomed. Eng. Online, 13(1), p. 135. [CrossRef] [PubMed]
Madden, J. D. , Vandesteeg, N. A. , Anquetil, P. A. , Madden, P. G. , Takshi, A. , Pytel, R. Z. , Lafontaine, S. R. , Wieringa, P. A. , and Hunter, I. W. , 2004, “ Artificial Muscle Technology: Physical Principles and Naval Prospects,” IEEE J. Ocean. Eng., 29(3), pp. 706–728. [CrossRef]
Dimitris, C. L. , 2008, Shape Memory Alloys: Modeling and Engineering Applications, D. C. Lagoudas, ed., Springer, New York.
BOA, 2017, “ Boa Closure System,” Boa Technology Inc., Denver, CO, accessed Aug. 7, 2017, https://www.theboasystem.com/
Holschuh, B. , Obropta, E. , and Newman, D. , 2015, “ Low Spring Index NiTi Coil Actuators for Use in Active Compression Garments,” IEEE/ASME Trans. Mechatronics, 20(3), pp. 1264–1277. [CrossRef]
Kim, S. , Hawkes, E. , Choy, K. , Joldaz, M. , Foleyz, J. , and Wood, R. , 2009, “ Micro Artificial Muscle Fiber Using NiTi Spring for Soft Robotics,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), St. Louis, MO, Oct. 10–15, pp. 2228–2234.
Sarria, A. , Garcia-Llop, L. , Moreno, L. , Fleta, J. , Morellon, M. , and Bueno, M. , 1998, “ Skinfold Thickness Measurements Are Better Predictors of Body Fat Percentage Than Body Mass Index in Male Spanish Children and Adolescents,” Eur. J. Clin. Nutr., 52(8), pp. 573–576. [CrossRef] [PubMed]
Fuller, N. , Hardingham, C. , Graves, M. , Screaton, N. , Dixon, A. , Ward, L. , and Elia, M. , 1999, “ Predicting Composition of Leg Sections With Anthropometry and Bioelectrical Impedance Analysis, Using Magnetic Resonance Imaging as Reference,” Clin. Sci., 96(6), pp. 647–657. [CrossRef] [PubMed]
Medigroup, 2017, “ PicoPress,” MediGroup Australia Pty Ltd., Melbourne, Australia, accessed Aug. 7, 2017, http://www.medigroup.com.au/picopress
Elahinia, M. H. , and Ahmadian, M. , 2005, “ An Enhanced SMA Phenomenological Model—I: The Shortcomings of the Existing Models,” Smart Mater. Struct., 14(6), p. 1297. [CrossRef]
Brinson, L. , 1993, “ One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation With Non-Constant Material Functions and Redefined Martensite Internal Variable,” J. Intell. Mater. Syst. Struct., 4(2), pp. 229–242. [CrossRef]
Ruina, A. , 1983, “ Slip Instability and State Variable Friction Laws,” J. Geophys. Res. Solid Earth, 88(B12), pp. 10359–10370. [CrossRef]
Convertino, V. A. , Doerr, D. F. , Flores, J. F. , Hoffler, G. W. , and Buchanan, P. , 1988, “ Leg Size and Muscle Functions Associated With Leg Compliance,” J. Appl. Physiol., 64(3), pp. 1017–1021. http://jap.physiology.org/content/64/3/1017.short [PubMed]
Goldberg, D. E. , 1989, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Longman, Boston, MA.
MathWorks, 2017, “ MATLAB Global Optimization Toolbox,” The MathWorks, Inc., Natick, MA.
Moein, H. , Schmill, U. , Komeili, M. , Pourazadi, S. , and Menon, C. , 2017, “ Effect of the Leg Volume Change on the Performance of an Active Compression Brace Based on Shape Memory Alloys,” J. Med. Biol. Eng., 37(2), pp. 248–261. [CrossRef]
Ezaz, T. , Wang, J. , Sehitoglu, H. , and Maier, H. , 2013, “ Plastic Deformation of NiTi Shape Memory Alloys,” Acta Mater., 61(1), pp. 67–78. [CrossRef]
Knight, J. F. , Deen-Williams, D. , Arvanitis, T. N. , Baber, C. , Sotiriou, S. , Anastopoulou, S. , and Gargalakos, M. , 2006, “ Assessing the Wearability of Wearable Computers,” Tenth IEEE International Symposium on Wearable Computers (ISWC), Montreux, Switzerland, Oct. 11–14, pp. 75–82.
Cancela, J. , Pastorino, M. , Tzallas, A. T. , Tsipouras, M. G. , Rigas, G. , Arredondo, M. T. , and Fotiadis, D. I. , 2014, “ Wearability Assessment of a Wearable System for Parkinson's Disease Remote Monitoring Based on a Body Area Network of Sensors,” Sensors, 14(9), pp. 17235–17255. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

(a) Active compression brace, (b) experimental setup, and (c) active compression brace wrapped around the calf

Grahic Jump Location
Fig. 2

Cyclic tests setup: the ACB was wrapped around a rigid leg mannequin having the PicoPress probe in the interface

Grahic Jump Location
Fig. 3

Cyclic tests results for three trials of applied current: (a) 100 mA, (b) 150 mA, and (c) 200 mA

Grahic Jump Location
Fig. 4

(a) A representative example from one of the participants showing the trace of total interface pressure exerted by the ACB on the calf and applied electrical current and (b) experimental and simulation results for actuation pressure versus applied current per SMA wire

Grahic Jump Location
Fig. 5

Experimental and simulation differences versus current for each participant

Grahic Jump Location
Fig. 6

Relationships between RMSD of simulation and experimental results with calf CSA minus calf fat CSA

Grahic Jump Location
Fig. 7

(a) NRMSD between simulation and experimental results for produced pressure by ACB before and after analytical model calibration (a) for each applied current and (b) for each participant

Grahic Jump Location
Fig. 8

Mean and standard error of participant ratings of comfort obtained (a) after the human tests with ACB and (b) after comparative tests of three different devices



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In