0
Design Innovation Paper

Design of a Magnetic Resonance-Safe Haptic Wrist Manipulator for Movement Disorder Diagnostics

[+] Author and Article Information
Dyon Bode

Moog B.V.,
Pesetaweg 53,
Nieuw-Vennep 2153 PJ, The Netherlands
e-mail: dbode@moog.com

Winfred Mugge

Department of Biomechanical Engineering,
Faculty of Mechanical,
Maritime and Materials Engineering,
Delft University of Technology,
Mekelweg 2,
Delft 2628 CD, The Netherlands;
Brain Imaging Center,
Academic Medical Center,
Meibergdreef 9,
Amsterdam-Zuidoost 1105 AZ, The Netherlands
e-mail: w.mugge@tudelft.nl

Alfred C. Schouten

Department of Biomechanical Engineering,
Faculty of Mechanical,
Maritime and Materials Engineering,
Delft University of Technology,
Mekelweg 2,
Delft 2628 CD, The Netherlands;
Department of Biomechanical Engineering,
MIRA,
University of Twente,
Drienerlolaan 5,
Enschede 7522 NB, The Netherlands
e-mail: a.c.schouten@tudelft.nl

Anne-Fleur van Rootselaar

Department of Neurology and Clinical Neurophysiology,
Academic Medical Center,
University of Amsterdam,
Meibergdreef 9,
Amsterdam-Zuidoost 1105 AZ, The Netherlands;
Brain Imaging Center,
Academic Medical Center,
Meibergdreef 9,
Amsterdam-Zuidoost 1105 AZ, The Netherlands
e-mail: a.f.vanrootselaar@amc.uva.nl

Lo J. Bour

Department of Neurology and Clinical Neurophysiology,
Academic Medical Center,
University of Amsterdam,
Meibergdreef 9,
Amsterdam-Zuidoost 1105 AZ, The Netherlands
e-mail: bour@amc.uva.nl

Frans C. T. van der Helm

Department of Biomechanical Engineering,
Faculty of Mechanical,
Maritime and Materials Engineering,
Delft University of Technology,
Mekelweg 2,
Delft 2628 CD, The Netherlands
e-mail: f.c.t.vanderhelm@tudelft.nl

Piet Lammertse

Moog B.V.,
Pesetaweg 53,
Nieuw-Vennep 2153 PJ, The Netherlands
e-mail: piet.lammertse@motekforcelink.com

1Corresponding author.

2D. Bode and W. Mugge contributed equally to this work.

Manuscript received November 7, 2016; final manuscript received August 7, 2017; published online October 4, 2017. Assoc. Editor: Michael Eggen.

J. Med. Devices 11(4), 045002 (Oct 04, 2017) (7 pages) Paper No: MED-16-1356; doi: 10.1115/1.4037674 History: Received November 07, 2016; Revised August 07, 2017

Tremor, characterized by involuntary and rhythmical movements, is the most common movement disorder. Tremor can have peripheral and central oscillatory components which properly assessed may improve diagnostics. A magnetic resonance (MR)-safe haptic wrist manipulator enables simultaneous measurement of proprioceptive reflexes (peripheral components) and brain activations (central components) through functional magnetic resonance imaging (fMRI). The presented design for an MR-safe haptic wrist manipulator has electrohydraulic closed-circuit actuation, optical position and force sensing, and consists of exclusively nonconductive and magnetically compatible materials inside the MR-environment (Zone IV). The MR-safe hydraulic actuator, a custom-made plastic vane motor, is connected to the magnetic parts and electronics located in the shielded control room (Zone III) via hydraulic hoses and optical fibers. Deliberate internal leakage provides backdriveability, damping, and circumvents friction. The manipulator is completely MR-safe and therefore operates safely in any MR-environment while ensuring fMRI imaging quality. Undesired external leakage in the actuator prevented the use of prepressure, limiting the control bandwidth. The compact end effector design fits in the MR-scanner, is easily setup, and can be clamped to the MR-scanner bed. This enables use of the manipulator with the subject at the optimal fMRI location and allows it to be setup quickly, saving costly MR-scanner time. The actuation and sensor solutions performed well inside the MR-environment and did not deteriorate image quality, which allows for various motor control experiments. Enabling prepressure by carrying out the recommendations on fabrication and sealing should improve the bandwidth and fulfill the requirements for proprioceptive reflex identification.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Chou, K. L. , Grube, S. , and Patil, P. G. , 2012, Deep Brain Stimulation: A New Life for People With Parkinson's, Dystonia, and Essential Tremor, Demos Medical Publishing, New York.
Wenning, G. K. , Kiechl, S. , Seppi, K. , Müller, J. , Högl, B. , Saletu, M. , Rungger, G. , Gasperi, A. , Willeit, J. , and Poewe, W. , 2005, “ Prevalence of Movement Disorders in Men and Women Aged 50-89 Years (Bruneck Study Cohort): A Population-Based Study,” Lancet Neurol., 4(12), pp. 815–820. [CrossRef] [PubMed]
Deuschl, G. , Bain, P. , and Brin, M. , 1998, “ Consensus Statement of the Movement Disorder Society on Tremor,” Mov. Disord., 13(S3), pp. 2–23. [CrossRef] [PubMed]
Elble, R. J. , 1996, “ Central Mechanisms of Tremor,” J. Clin. Neurophysiol., 13(2), pp. 133–144. [CrossRef] [PubMed]
Grimaldi, G. , and Manto, M. , 2008, Tremor: From Pathogenesis to Treatment, Morgan & Claypool, San Rafael, CA.
Kearney, R. E. , Stein, R. B. , and Parameswaran, L. , 1997, “ Identification of Intrinsic and Reflex Contributions to Human Ankle Stiffness Dynamics,” IEEE Trans. Biomed. Eng., 44(6), pp. 493–504. [CrossRef] [PubMed]
Mirbagheri, M. M. , Barbeau, H. , and Kearney, R. E. , 2000, “ Intrinsic and Reflex Contributions to Human Ankle Stiffness: Variation With Activation Level and Position,” Exp. Brain Res., 135(4), pp. 423–436. [CrossRef] [PubMed]
van der Helm, F. C. T. , Schouten, A. C. , de Vlugt, E. , and Brouwn, G. G. , 2002, “ Identification of Intrinsic and Reflexive Components of Human Arm Dynamics During Postural Control,” J. Neurosci. Methods, 119(1), pp. 1–14. [CrossRef] [PubMed]
Tsekos, N. V. , Christoforou, E. , and Özcan, A. , 2008, “ A General-Purpose MR-Compatible Robotic System,” IEEE Eng. Med. Biol. Mag., 27(3), pp. 51–58. [CrossRef] [PubMed]
Chinzei, K. , Kikinis, R. , and Jolesz, F. A. , 1999, “ MR Compatibility of Mechatronic Devices: Design Criteria,” Medical Image Computing and Computer-Assisted Intervention—MICCAI, Springer, Berlin, pp. 1020–1030. [CrossRef]
Elhawary, H. , Zivanovic, A. , Rea, M. , Davies, B. L. , Besant, C. , Young, I. , and Lamperth, M. U. , 2008, “ A Modular Approach to MRI-Compatible Robotics,” IEEE Eng. Med. Biol. Mag., 27(3), pp. 35–41. [CrossRef] [PubMed]
Flueckiger, M. , Bullo, M. , Chapuis, D. , Gassert, R. , and Perriard, Y. , 2005, “ fMRI Compatible Haptic Interface Actuated With Traveling Wave Ultrasonic Motor,” IEEE Industry Applications Conference, 40th IAS Annual Meeting, Hong Kong, China, Oct. 2–6, pp. 2075–2082.
Yamamoto, A. , Ichiyanagi, K. , Higuchi, T. , Imamizu, H. , Gassert, R. , Ingold, M. , Sache, L. , and Bleuler, H. , 2005, “ Evaluation of MR-Compatibility of Electrostatic Linear Motor,” IEEE International Conference on Robotics and Automation (ICRA), Barcelona, Spain, Apr. 18–22, pp. 3658–3663.
Yu, N. , Murr, W. , Blickenstorfer, A. , Kollias, S. , and Riener, R. , 2007, “ An fMRI Compatible Haptic Interface With Pneumatic Actuation,” IEEE Tenth International Conference on Rehabilitation Robotics (ICORR), Noordwijk, The Netherlands, June 13–15, pp. 714–720.
Stoianovici, D. , Patriciu, A. , Petrisor, D. , Mazilu, D. , and Kavoussi, L. , 2007, “ A New Type of Motor: Pneumatic Step Motor,” IEEE/ASME Trans. Mechatron., 12(1), pp. 98–106. [CrossRef]
Diedrichsen, J. , Hashambhoy, Y. , Rane, T. , and Shadmehr, R. , 2005, “ Neural Correlates of Reach Errors,” J. Neurosci., 25(43), pp. 9919–9931. [CrossRef] [PubMed]
Suminski, A. J. , Zimbelman, J. L. , and Scheidt, R. A. , 2007, “ Design and Validation of a MR-Compatible Pneumatic Manipulandum,” J. Neurosci. Methods, 163(2), pp. 255–266. [CrossRef] [PubMed]
Gassert, R. , Moser, R. , Burdet, E. , Bleuler, H. , Member, S. , Moser, R. , and Burdet, E. , 2006, “ MRI/fMRI-Compatible Robotic System With Force Feedback for Interaction With Human Motion,” IEEE/ASME Trans. Mechatron., 11(2), pp. 216–224. [CrossRef]
Yu, N. , Estévez, N. , Hepp-Reymond, M. C. , Kollias, S. S. , and Riener, R. , 2011, “ FMRI Assessment of Upper Extremity Related Brain Activation With an MRI-Compatible Manipulandum,” Int. J. Comput. Assist. Radiol. Surg., 6(3), pp. 447–455. [CrossRef] [PubMed]
Khanicheh, A. , Muto, A. , Triantafyllou, C. , Weinberg, B. , Astrakas, L. , Tzika, A. , and Mavroidis, C. , 2006, “ fMRI-Compatible Rehabilitation Hand Device,” J. Neuroeng. Rehabil., 3(1), pp. 1–11. [CrossRef] [PubMed]
Chapuis, D. , Gassert, R. , Ganesh, G. , Burdet, E. , and Bleuler, H. , 2006, “ Investigation of a Cable Transmission for the Actuation of MR Compatible Haptic Interfaces,” The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Pisa, Italy, Feb. 20–22, pp. 426–431.
Christoforou, E. G. , Tsekos, N. V. , and Özcan, A. , 2006, “ Design and Testing of a Robotic System for MR Image-Guided Interventions,” J. Intell. Rob. Syst., 47(2), pp. 175–196. [CrossRef]
Schaefers, G. , 2008, “ Testing MR Safety and Compatibility,” IEEE Eng. Med. Biol. Mag., 27(3), pp. 23–27. [CrossRef] [PubMed]
ASTM, 2008, “ Standard Practice for Marking Medical Devices and Other Items for Safety in the Magnetic Resonance Environment,” ASTM International, West Conshohocken, PA, Standard No. F2503-08. https://www.astm.org/DATABASE.CART/HISTORICAL/F2503-08.htm
Kanal, E. , Barkovich, A. J. , Bell, C. , Borgstede, J. P. , Bradley, W. G. , Froelich, J. W. , Gilk, T. , Gimbel, J. R. , Gosbee, J. , Kuhni-Kaminski, E. , Lester, J. W. , Nyenhuis, J. , Parag, Y. , Schaefer, D. J. , Sebek-Scoumis, E. A. , Weinreb, J. , Zaremba, L. A. , Wilcox, P. , Lucey, L. , Sass, N. , and the ACR Blue Ribbon Panel on MR Safety, 2007, “ ACR Guidance Document for Safe MR Practices: 2007,” Am. J. Roentgenol., 188(6), pp. 1447–1474. [CrossRef]
Schouten, A. C. , de Vlugt, E. , van Hilten, J. J. B. , and van der Helm, F. C. T. , 2006, “ Design of a Torque-Controlled Manipulator to Analyse the Admittance of the Wrist Joint,” J. Neurosci. Methods, 154(1–2), pp. 134–141. [CrossRef] [PubMed]
Tsekos, N. V. , Ozcan, A. , and Christoforou, E. , 2005, “ A Prototype Manipulator for Magnetic Resonance-Guided Interventions Inside Standard Cylindrical Magnetic Resonance Imaging Scanners,” ASME J. Biomech. Eng., 127(6), pp. 972–980. [CrossRef]
Williams, D. , 2001, Robot for Wrist Rehabilitation, MIT, Cambridge, MA.
Gassert, R. , Chapuis, D. , Bleuler, H. , and Burdet, E. , 2008, “ Sensors for Applications in Magnetic Resonance Environments,” IEEE/ASME Trans. Mechatron., 13(3), pp. 335–344. [CrossRef]
Perreault, E. J. , Kirsch, R. F. , and Crago, P. E. , 2001, “ Effects of Voluntary Force Generation on the Elastic Components of Endpoint Stiffness,” Exp. Brain Res., 141(3), pp. 312–323. [CrossRef] [PubMed]
Burdet, E. , Gassert, R. , Gowrishankar, G. , Chapuis, D. , and Bleuler, H. , 2006, “ fMRI Compatible Haptic Interfaces to Investigate Human Motor Control,” Exp. Rob. IX, 21, pp. 25–34. [CrossRef]
Yu, N. , Hollnagel, C. , Blickenstorfer, A. , Kollias, S. S. , and Riener, R. , 2008, “ Comparison of MRI-Compatible Mechatronic Systems With Hydrodynamic and Pneumatic Actuation,” IEEE/ASME Trans. Mechatron., 13(3), pp. 268–277. [CrossRef]
Hidler, J. , Mbwana, J. , and Zeffiro, T. , 2005, “ MRI Compatible Force Sensing System for Real-Time Monitoring of Wrist Moments During fMRI Testing,” Ninth International Conference on Rehabilitation Robotics (ICORR), Chicago, IL, June 28–July 1, pp. 212–214.
Liu, J. Z. , Dai, T. H. , Elster, T. H. , Sahgal, V. , Brown, R. W. , and Yue, G. H. , 2000, “ Simultaneous Measurement of Human Joint Force, Surface Electromyograms, and Functional MRI-Measured Brain Activation,” J. Neurosci. Methods, 101(1), pp. 49–57. [CrossRef] [PubMed]
Chapuis, D. , Gassert, R. , Sache, L. , Burdet, E. , and Bleuler, H. , 2004, “ Design of a Simple MRI/fMRI Compatible Force/Torque Sensor,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sendai, Japan, Sept. 28–Oct. 2, pp. 2593–2599.
Hara, M. , Matthey, G. , Yamamoto, A. , Chapuis, D. , Gassert, R. , Bleuler, H. , and Higuchi, T. , 2009, “ Development of a 2-DOF Electrostatic Haptic Joystick for MRI/fMRI Applications,” IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, May 12–17, pp. 1479–1484.
Vlaar, M. P. , Mugge, W. , Groot, P. F. C. , Sharifi, S. , Bour, L. J. , van der Helm, F. C. T. , van Rootselaar, A.-F. , and Schouten, A. C. , 2016, “ Targeted Brain Activation Using an MR-Compatible Wrist Torque Measurement Device and Isometric Motor Tasks During Functional Magnetic Resonance Imaging,” Magn. Reson. Imaging, 34(6), pp. 795–802.
Pintelon, R. , and Schoukens, J. , 2001, System Identification: A Frequency Domain Approach, Wiley-IEEE Press, New York. [CrossRef]
Tsekos, N. V. , Khanicheh, A. , Christoforou, E. , and Mavroidis, C. , 2007, “ Magnetic Resonance–Compatible Robotic and Mechatronics Systems for Image-Guided Interventions and Rehabilitation: A Review Study,” Annu. Rev. Biomed. Eng., 9(1), pp. 351–387. [CrossRef] [PubMed]
Rowe, J. B. , and Frackowiak, R. S. J. , 1999, “ The Impact of Brain Imaging Technology on Our Understanding of Motor Function and Dysfunction,” Curr. Opin. Neurobiol., 9(6), pp. 728–734. [CrossRef] [PubMed]
Gassert, R. , Burdet, E. , and Chinzei, K. , 2008, “ Opportunities and Challenges in MR-Compatible Robotics,” IEEE Eng. Med. Biol. Mag., 27(3), pp. 15–22. [CrossRef] [PubMed]
Heeger, D. J. , and Ress, D. , 2002, “ What Does fMRI Tell Us About Neuronal Activity?,” Nat. Rev. Neurosci., 3(2), pp. 142–151. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Schematic representation of the hydraulic master–slave actuation system. The vane motor acts as the slave in the MR-environment, and the hydraulic pump, driven by an electromotor, acts as the master in the control room.

Grahic Jump Location
Fig. 3

The top panel shows drawings of the torque sensor with the knife-edge method to detect the displacement of (A) with regards to the sensor head when a force is applied to (B). The bottom panel shows a top view drawing of the absolute optical position sensor. In this rendering, the encoder disk is made transparent so that the optical sensor can be seen. Rotor direction of motion is indicted by the arrow. The position sensor is in one extreme resulting in the minimal amount of reflective surface from the encoder disk.

Grahic Jump Location
Fig. 4

Photograph of the MR-safe haptic wrist manipulator inside the MR-environment, showing the vane motor, optical sensors, and 9 m hoses. Note that the real-time computer, electromotor and drive, hydraulic pump, reservoir and valves, and emergency stop button are outside the MR-environment in the control room.

Grahic Jump Location
Fig. 2

Drawings of the vane motor. Coupled cross-linked fluid in/outlets are labeled either A or B. (a) Top view drawing of the vane motor with cover removed. (b) Transparent drawing of the base stator illustrating the cross-linked fluid ducts.

Grahic Jump Location
Fig. 5

The open-loop FRFs of the commanded velocity to the measured vane velocity. The dashed trace represents the FRF as determined with the optical sensor; for comparison, the solid trace represents the FRF determined with the calibration sensor. The FRF made with the measurements from the optical sensor has an increased phase lag due to filtering.

Grahic Jump Location
Fig. 6

The closed-loop FRFs of the measured torque to the commanded position. The dotted traces represent the fitted inertias.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In