0
Research Papers

A Novel Graft Fixation Technique for Anterior Cruciate Ligament Reconstruction Using Hamstring Tendon Grafts

[+] Author and Article Information
Guoan Li

Orthopaedic Biomechanics Lab,
Department of Orthopaedic Surgery,
Newton-Wellesley Hospital/Harvard
Medical School,
Newton, MA 02462
e-mail: Gli1@partners.org

Ali Hosseini, Hemanth Gadikota, Thomas Gill

Orthopaedic Biomechanics Lab,
Department of Orthopaedic Surgery,
Newton-Wellesley Hospital/Harvard
Medical School,
Newton, MA 02462

1Corresponding author.

Manuscript received April 26, 2017; final manuscript received October 9, 2017; published online November 22, 2017. Assoc. Editor: Rita M. Patterson.

J. Med. Devices 12(1), 011004 (Nov 22, 2017) (6 pages) Paper No: MED-17-1209; doi: 10.1115/1.4038307 History: Received April 26, 2017; Revised October 09, 2017

This study evaluated the biomechanical efficacy of single-tunnel double-bundle anterior cruciate ligament (ACL) reconstruction technique. The graft construct is achieved using a novel fixation device that splits an ACL (SPACL) graft into two bundles, recreating the anteromedial (AM) and posterolateral (PL) bundles for ACL reconstruction. A pullout strength test of the SPACL was performed using a 7-mm bovine digital extensor tendon graft. The capability in restoration of knee kinematics after SPACL reconstruction was investigated using cadaveric human knees on a robotic testing system under an anterior tibial load of 134 N and a simulated quadriceps load of 400 N. The data indicated that the SPACL graft has a pullout strength of 823.7±172.3 N. Under the 134 N anterior tibial load, the anteroposterior joint laxity had increased constraint using the SPACL reconstruction but not significantly (p > 0.05) at all selected flexion angles. Under the 400 N quadriceps load, no significant differences were observed between the anterior tibial translation of intact knee and SPACL conditions at all selected flexion angles, but the SPACL graft induced a significant increase in external tibial rotation compared to the intact knee condition at all selected flexion angles with a maximal external rotation of −3.20 deg ±3.6 deg at 90 deg flexion. These data showed that the SPACL technique is equivalent or superior to existing ACL reconstruction techniques in restoration of knee laxity and kinematics. The new SPACL reconstruction technique could provide a valuable alternation to contemporary ACL reconstruction surgery by more closely recreating native ACL kinematics.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Carulli, C. , Matassi, F. , Soderi, S. , Sirleo, L. , Munz, G. , and Innocenti, M. , 2016, “ Resorbable Screw and Sheath versus Resorbable Interference Screw and Staples for ACL Reconstruction: A Comparison of Two Tibial Fixation Methods,” Knee Surg. Sports Traumatol. Arthrosc., 25(4), pp. 1264–1271.
Saygi, B. , Karaman, O. , Sirin, E. , Arslan, I. , Demir, A. , and Oztermeli, A. , 2016, “ Comparison of Different Femoral Fixation Implants and Fit Techniques for Tunnel Widening and Clinical Outcome in ACL Reconstruction Using Hamstring Autograft,” Arch. Orthop. Trauma Surg., 136(2), pp. 241–247. [CrossRef] [PubMed]
Gadikota, H. R. , Hosseini, A. , Asnis, P. , and Li, G. , 2015, “ Kinematic Analysis of Five Different Anterior Cruciate Ligament Reconstruction Techniques,” Knee Surg. Relat. Res., 27(2), pp. 69–75. [CrossRef] [PubMed]
Srinivas, D. K. , Kanthila, M. , Saya, R. P. , and Vidyasagar, J. , 2016, “ Femoral and Tibial Tunnel Widening Following Anterior Cruciate Ligament Reconstruction Using Various Modalities of Fixation: A Prospective Observational Study,” J. Clin. Diagn. Res., 10(11), pp. RC09–RC11. [PubMed]
Aga, C. , Wilson, K. J. , Johansen, S. , Dornan, G. , La Prade, R. F. , and Engebretsen, L. , 2016, “ Tunnel Widening in Single- Versus Double-Bundle Anterior Cruciate Ligament Reconstructed Knees,” Knee Surg. Sports Traumatol. Arthrosc., 25(4), pp. 1316–1327.
Cohen, S. B. , Pandarinath, R. , O'Hagan, T. , Marchetto, P. A. , Hyatt, A. , Wascher, J. , and Deluca, P. F. , 2015, “ Results of ACL Reconstruction With Tibial Retroscrew Fixation: Comparison of Clinical Outcomes and Tibial Tunnel Widening,” Physician Sportsmed., 43(2), pp. 138–142. [CrossRef]
Kanazawa, T. , Soejima, T. , Noguchi, K. , Tabuchi, K. , Noyama, M. , Nakamura, K. , and Shiba, N. , 2014, “ Tendon-to-Bone Healing Using Autologous Bone Marrow-Derived Mesenchymal Stem Cells in ACL Reconstruction Without a Tibial Bone Tunnel-a Histological Study,” Muscles Ligaments Tendons J., 4(2), pp. 201–206. [PubMed]
Mermerkaya, M. U. , Atay, O. A. , Kaymaz, B. , Bekmez, S. , Karaaslan, F. , and Doral, M. N. , 2015, “ Anterior Cruciate Ligament Reconstruction Using a Hamstring Graft: A Retrospective Comparison of Tunnel Widening upon Use of Two Different Femoral Fixation Methods,” Knee Surg. Sports Traumatol. Arthroscopy, 23(8), pp. 2283–2291. [CrossRef]
Starantzis, K. A. , Mastrokalos, D. , Koulalis, D. , Papakonstantinou, O. , Soucacos, P. N. , and Papagelopoulos, P. J. , 2014, “ The Potentially Positive Role of PRPs in Preventing Femoral Tunnel Widening in ACL Reconstruction Surgery Using Hamstrings: A Clinical Study in 51 Patients,” J. Sports Med., 2014, p. 789317. [CrossRef]
Kim, S. J. , Bae, J. H. , Song, S. H. , and Lim, H. C. , 2013, “ Bone Tunnel Widening With Autogenous Bone Plugs Versus Bioabsorbable Interference Screws for Secondary Fixation in ACL Reconstruction,” J. Bone Jt. Surg. Am., 95(2), pp. 103–108. [CrossRef]
Uzumcugil, O. , Yalcinkaya, M. , Ozturkmen, Y. , Dikmen, G. , and Caniklioglu, M. , 2012, “ Effect of PEEK Polymer on Tunnel Widening After Hamstring ACL Reconstruction,” Orthopedics, 35(5), pp. e654–e659. [CrossRef] [PubMed]
Vadala, A. , Iorio, R. , De Carli, A. , Ferretti, M. , Paravani, D. , Caperna, L. , Iorio, C. , Gatti, A. , and Ferretti, A. , 2013, “ Platelet-Rich Plasma: Does It Help Reduce Tunnel Widening after ACL Reconstruction?,” Knee Surg. Sports Traumatol. Arthroscopy, 21(4), pp. 824–829. [CrossRef]
Suomalainen, P. , Jarvela, T. , Paakkala, A. , Kannus, P. , and Jarvinen, M. , 2012, “ Double-Bundle Versus Single-Bundle Anterior Cruciate Ligament Reconstruction: A Prospective Randomized Study With 5-Year Results,” Am. J. Sports Med., 40(7), pp. 1511–1518. [CrossRef] [PubMed]
Carbone, A. , Carballo, C. , Ma, R. , Wang, H. , Deng, X. , Dahia, C. , and Rodeo, S. , 2016, “ Indian Hedgehog Signaling and the Role of Graft Tension in Tendon-to-Bone Healing: Evaluation in a Rat ACL Reconstruction Model,” J. Orthop. Res., 34(4), pp. 641–649. [CrossRef] [PubMed]
Lui, P. P. , Lee, Y. W. , Mok, T. Y. , and Cheuk, Y. C. , 2015, “ Peri-Tunnel Bone Loss: Does It Affect Early Tendon Graft to Bone Tunnel Healing After ACL Reconstruction?,” Knee Surg. Sports Traumatol. Arthrosc., 23(3), pp. 740–751. [CrossRef] [PubMed]
Hensler, D. , Illingworth, K. D. , Musahl, V. , Working, Z. M. , Kobayashi, T. , Miyawaki, M. , Lorenz, S. , Witt, M. , Irrgang, J. J. , Huard, J. , and Fu, F. H. , 2015, “ Does Fibrin Clot Really Enhance Graft Healing After Double-Bundle ACL Reconstruction in a Caprine Model?,” Knee Surg. Sports Traumatol. Arthrosc., 23(3), pp. 669–679. [CrossRef] [PubMed]
Fleming, B. C. , Proffen, B. L. , Vavken, P. , Shalvoy, M. R. , Machan, J. T. , and Murray, M. M. , 2015, “ Increased Platelet Concentration Does Not Improve Functional Graft Healing in Bio-Enhanced ACL Reconstruction,” Knee Surg. Sports Traumatol. Arthrosc., 23(4), pp. 1161–1170. [CrossRef] [PubMed]
Mutsuzaki, H. , and Sakane, M. , 2011, “ Calcium Phosphate-Hybridized Tendon Graft to Enhance Tendon-Bone Healing Two Years After ACL Reconstruction in Goats,” Sports Med. Arthroscopy Rehabil. Ther. Technol., 3(1), p. 31. [CrossRef]
Lovric, V. , Kanazawa, T. , Nakamura, Y. , Oliver, R. A. , Yu, Y. , and Walsh, W. R. , 2011, “ Effects of Gaps Induced Into the ACL Tendon Graft on Tendon-Bone Healing in a Rodent ACL Reconstruction Model,” Muscles Ligaments Tendons J., 1(3), pp. 91–99. [PubMed]
Hunt, P. , Rehm, O. , and Weiler, A. , 2006, “ Soft Tissue Graft Interference Fit Fixation: Observations on Graft Insertion Site Healing and Tunnel Remodeling 2 Years After ACL Reconstruction in Sheep,” Knee Surg. Sports Traumatol. Arthrosc., 14(12), pp. 1245–1251. [CrossRef] [PubMed]
Biercevicz, A. M. , Akelman, M. R. , Fadale, P. D. , Hulstyn, M. J. , Shalvoy, R. M. , Badger, G. J. , Tung, G. A. , Oksendahl, H. L. , and Fleming, B. C. , 2015, “ MRI Volume and Signal Intensity of ACL Graft Predict Clinical, Functional, and Patient-Oriented Outcome Measures After ACL Reconstruction,” Am. J. Sports Med., 43(3), pp. 693–699. [CrossRef] [PubMed]
Spindler, K. P. , Murray, M. M. , Carey, J. L. , Zurakowski, D. , and Fleming, B. C. , 2009, “ The Use of Platelets to Affect Functional Healing of an Anterior Cruciate Ligament (ACL) Autograft in a Caprine ACL Reconstruction Model,” J. Orthop. Res., 27(5), pp. 631–638. [CrossRef] [PubMed]
Li, F. , Jia, H. , and Yu, C. , 2007, “ ACL Reconstruction in a Rabbit Model Using Irradiated Achilles Allograft Seeded With Mesenchymal Stem Cells or PDGF-B Gene-Transfected Mesenchymal Stem Cells,” Knee Surg. Sports Traumatol. Arthrosc., 15(10), pp. 1219–1227. [CrossRef] [PubMed]
Samuelsen, B. T., Webster, K. E., Johnson, N. R., Hewett, T. E., and Krych, A. J., 2017, “Hamstring Autograft Versus Patellar Tendon Autograft for ACL Reconstruction: Is There a Difference in Graft Failure Rate? A Meta-Analysis of 47,613 Patients,” Clin. Orthop. Relat. Res., epub.
Gadikota, H. R. , Seon, J. K. , Chen, C. H. , Wu, J. L. , Gill, T. J. , and Li, G. , 2011, “ In Vitro and Intraoperative Laxities After Single-Bundle and Double-Bundle Anterior Cruciate Ligament Reconstructions,” Arthroscopy, 27(6), pp. 849–860. [CrossRef] [PubMed]
Gadikota, H. R. , Wu, J. L. , Seon, J. K. , Sutton, K. , Gill, T. J. , and Li, G. , 2010, “ Single-Tunnel Double-Bundle Anterior Cruciate Ligament Reconstruction With Anatomical Placement of Hamstring Tendon Graft: Can It Restore Normal Knee Joint Kinematics?,” Am. J. Sports Med., 38(4), pp. 713–720. [CrossRef] [PubMed]
Seon, J. K. , Gadikota, H. R. , Wu, J. L. , Sutton, K. , Gill, T. J. , and Li, G. , 2010, “ Comparison of Single- and Double-Bundle Anterior Cruciate Ligament Reconstructions in Restoration of Knee Kinematics and Anterior Cruciate Ligament Forces,” Am. J. Sports Med., 38(7), pp. 1359–1367. [CrossRef] [PubMed]
Yoo, J. D. , Papannagari, R. , Park, S. E. , DeFrate, L. E. , Gill, T. J. , and Li, G. , 2005, “ The Effect of Anterior Cruciate Ligament Reconstruction on Knee Joint Kinematics Under Simulated Muscle Loads,” Am. J. Sports Med., 33(2), pp. 240–246. [CrossRef] [PubMed]
Li, G. , Gadikota, H. , and Gill, T. , 2012, “ System and Method for Ligament Reconstruction,” U.S. Patent No. US2012/0109299.
Ahmad, C. S. , Gardner, T. R. , Groh, M. , Arnouk, J. , and Levine, W. N. , 2004, “ Mechanical Properties of Soft Tissue Femoral Fixation Devices for Anterior Cruciate Ligament Reconstruction,” Am. J. Sports Med., 32(3), pp. 635–640. [CrossRef] [PubMed]
Kousa, P. , Jarvinen, T. L. , Vihavainen, M. , Kannus, P. , and Jarvinen, M. , 2003, “ The Fixation Strength of Six Hamstring Tendon Graft Fixation Devices in Anterior Cruciate Ligament Reconstruction—Part II: Tibial Site,” Am. J. Sports Med., 31(2), pp. 182–188. [CrossRef] [PubMed]
Kousa, P. , Jarvinen, T. L. , Vihavainen, M. , Kannus, P. , and Jarvinen, M. , 2003, “ The Fixation Strength of Six Hamstring Tendon Graft Fixation Devices in Anterior Cruciate Ligament Reconstruction—Part I: Femoral Site,” Am. J. Sports Med., 31(2), pp. 174–181. [CrossRef] [PubMed]
Zantop, T. , Weimann, A. , Schmidtko, R. , Herbort, M. , Raschke, M. J. , and Petersen, W. , 2006, “ Graft Laceration and Pullout Strength of Soft-Tissue Anterior Cruciate Ligament Reconstruction: In Vitro Study Comparing Titanium, Poly-d, l-Lactide, and Poly-d, l-Lactide-Tricalcium Phosphate Screws,” Arthroscopy, 22(11), pp. 1204–1210. [CrossRef] [PubMed]
DeFrate, L. E. , van der Ven, A. , Gill, T. J. , and Li, G. , 2004, “ The Effect of Length on the Structural Properties of an Achilles Tendon Graft as Used in Posterior Cruciate Ligament Reconstruction,” Am. J. Sports Med., 32(4), pp. 993–997. [CrossRef] [PubMed]
Li, G. , DeFrate, L. , Suggs, J. , and Gill, T. , 2003, “ Determination of Optimal Graft Lengths for Posterior Cruciate Ligament Reconstruction–A Theoretical Analysis,” ASME J. Biomech. Eng., 125(2), pp. 295–299. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Novel graft fixation device that split the ACL graft (SPACL) into two bundles in the tunnel using a sheath and a screw

Grahic Jump Location
Fig. 2

Pullout test setup: (a) using the SPACL to split the hamstring graft into two bundles in the bony tunnel and (b) setup of the pullout test using the robotic testing system

Grahic Jump Location
Fig. 3

Novel technique to separate two graft bundles in a single tunnel to simulate the AM and PL bundles of the native ACL

Grahic Jump Location
Fig. 4

Changes of (a) anterior–posterior tibial translation (anterior laxity) under a 134 N anterior tibial load, (b) anterior–posterior tibial translation, and (c) axial tibial rotation under a 400 N quadriceps load after ACL reconstruction using the novel graft fixation technique. The data are compared with three typical ACL reconstructions published in literature. (#: the SPACL causes significant differences compared to intact knees; *: significant difference between the SPACL and other reconstructions).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In