Research Papers

Design and Experimental Validation of an Active Catheter for Endovascular Navigation

[+] Author and Article Information
Thibault Couture

Service de Chirurgie vasculaire,
Hôpital Pitié-Salpêtrière,
52 Boulevard Vincent-Auriol,
Paris 75013, France
e-mail: thibault.couture@gmail.com

Jérôme Szewczyk

Institut des Systèmes Intelligents et de
Université Pierre et Marie Curie,
Boîte courrier 173,
4 place Jussieu,
Paris 75252, France,
e-mail: szewczyk@isir.upmc.fr

1Corresponding author.

Manuscript received January 27, 2017; final manuscript received September 21, 2017; published online November 22, 2017. Assoc. Editor: Michael Eggen.

J. Med. Devices 12(1), 011003 (Nov 22, 2017) (12 pages) Paper No: MED-17-1019; doi: 10.1115/1.4038334 History: Received January 27, 2017; Revised September 21, 2017

Endovascular techniques have many advantages but rely strongly on operator skills and experience. Robotically steerable catheters have been developed but few are clinically available. We describe here the development of an active and efficient catheter based on shape memory alloys (SMA) actuators. We first established the specifications of our device considering anatomical constraints. We then present a new method for building active SMA-based catheters. The proposed method relies on the use of a core body made of three parallel metallic beams and integrates wire-shaped SMA actuators. The complete device is encapsulated into a standard 6F catheter for safety purposes. A trial-and-error campaign comparing 70 different prototypes was conducted to determine the best dimensions of the core structure and of the SMA actuators with respect to the imposed specifications. The final prototype was tested on a silicon-based arterial model and on a 23 kg pig. During these experiments, we were able to cannulate the supra-aortic trunks and the renal arteries with different angulations and without any complication. A second major contribution of this paper is the derivation of a reliable mathematical model for predicting the bending angle of our active catheters. We first use this model to state some general qualitative rules useful for an iterative dimensional optimization. We then perform a quantitative comparison between the actual and the predicted bending angles for a set of 13 different prototypes. The relative error is less than 20% for bending angles between 100 deg and 150 deg, which is the interval of interest for our applications.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Coghlan, K. M. , Breen, L. T. , Martin, Z. , O'Neill, S. , Madhaven, P. , Moore, D. , and Murphy, B. P. , 2013, “ An Experimental Study to Determine the Optimal Access Route for Renal Artery Interventions,” Eur. J. Vasc. Endovascular Surg., 46(2), pp. 236–241. [CrossRef]
Antoniou, G. A. , Riga, C. V. , Mayer, E. K. , Cheshire, N. J. , and Bicknell, C. D. , 2011, “ Clinical Applications of Robotic Technology in Vascular and Endovascular Surgery,” J. Vasc. Surg., 53(2), pp. 493–499. [CrossRef] [PubMed]
Cochennec, F. , Riga, C. , Hamady, M. , Cheshire, N. , and Bicknell, C. , 2013, “ Improved Catheter Navigation With 3D Electromagnetic Guidance,” J. Endovasc. Ther., 20(1), pp. 39–47. [CrossRef] [PubMed]
Duran, C. , Lumsden, A. B. , and Bismuth, J. , 2014, “ A Randomized, Controlled Animal Trial Demonstrating the Feasibility and Safety of the MagellanTM Endovascular Robotic System,” Ann. Vasc. Surg., 28(2), pp. 470–478. [CrossRef] [PubMed]
Bismuth, J. , Kashef, E. , Cheshire, N. , and Lumsden, A. B. , 2011, “ Feasibility and Safety of Remote Endovascular Catheter Navigation in a Porcine Model,” J. Endovasc. Ther., 18(2), pp. 243–249. [CrossRef] [PubMed]
Bismuth, J. , Duran, C. , Stankovic, M. , Gersak, B. , and Lumsden, A. B. , 2013, “ A First-in-Man Study of the Role of Flexible Robotics in Overcoming Navigation Challenges in the Iliofemoral Arteries,” J. Vasc. Surg., 57(2), pp. 14S–19S. [CrossRef] [PubMed]
Cochennec, F. , Kobeiter, H. , Gohel, M. , Marzelle, J. , Desgranges, P. , Allaire, E. , and Becquemin, J. P. , 2015, “ Feasibility and Safety of Renal and Visceral Target Vessel Cannulation Using Robotically Steerable Catheters During Complex Endovascular Aortic Procedures,” J. Endovasc. Ther., 22(2), pp. 187–193. [CrossRef] [PubMed]
Riga, C. V. , Cheshire, N. J. W. , Hamady, M. S. , and Bicknell, C. D. , 2010, “ The Role of Robotic Endovascular Catheters in Fenestrated Stent Grafting,” J. Vasc. Surg., 51(4), pp. 810–819. [CrossRef] [PubMed]
Riga, C. V. , Bicknell, C. D. , Hamady, M. S. , and Cheshire, N. J. W. , 2011, “ Evaluation of Robotic Endovascular Catheters for Arch Vessel Cannulation,” J. Vasc. Surg., 54(3), pp. 799–809. [CrossRef] [PubMed]
Riga, C. V. , Bicknell, C. D. , Hamady, M. , and Cheshire, N. , 2012, “ Tortuous Iliac Systems—A Significant Burden to Conventional Cannulation in the Visceral Segment: Is There a Role for Robotic Catheter Technology?,” J. Vasc. Interv. Radiol., 23(10), pp. 1369–1375. [CrossRef] [PubMed]
de Ruiter, Q. M. B. , Moll, F. L. , and van Herwaarden, J. A. , 2015, “ Current State in Tracking and Robotic Navigation Systems for Application in Endovascular Aortic Aneurysm Repair,” J. Vasc. Surg., 61(1), pp. 256–264. [CrossRef] [PubMed]
Shurrab, M. , Danon, A. , Lashevsky, I. , Kiss, A. , Newman, D. , Szili-Torok, T. , and Crystal, E. , 2013, “ Robotically Assisted Ablation of Atrial Fibrillation: A Systematic Review and Meta-Analysis,” Int. J. Cardiol., 169(3), pp. 157–165. [CrossRef] [PubMed]
Gilbert, H. B. , Hendrick, R. J. , and Webster, R. J. , 2016, “ Elastic Stability of Concentric Tube Robots: A Stability Measure and Design Test,” IEEE Trans. Rob., 32(1), pp. 20–35. [CrossRef]
Dupont, P. E. , Gosline, A. , Vasilyev, N. D. , and el Nido, P. , 2012, “Concentric Tube Robots for Minimally Invasive Surgery,” The Hamlyn Symposium on Medical Robotics, London, July 1–2, pp. 3–5.
Kim, J. S. , Lee, D. Y. , and Kim, K. , 2014, “ Toward a Solution to the Snapping Problem in a Concentric-Tube Continuum Robot: Grooved Tubes With Anisotropy,” IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, May 31–June 7, pp. 5871–5876.
Liu, J. , Wang, Y. , Zhao, D. , Zhang, C. , Chen, H. , and Li, D. , 2014, “ Design and Fabrication of an IPMC-Embedded Tube for Minimally Invasive Surgery Applications,” Proc. SPIE, 9056, pp. 90563K.
Shoa, T. , Madden, J. D. , Fekri, N. , Munce, N. R. , and Yang, V. X. , 2008, “ Conducting Polymer Based Active Catheter for Minimally Invasive Interventions Inside Arteries,” 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Vancouver, BC, Canada, Aug. 20–25, pp. 2063–2066.
Ikuta, K. , Yajima, D. , Ichikawa, H. , and Katsuya, S. , 2007, “ Hydrodynamic Active Catheter With Multi Degrees of Freedom Motion,” World Congress on Medical Physics and Biomedical Engineering, Seoul, Korea, Aug. 27–Sept. 1, pp. 3091–3094.
Ikeuchi, M. , and Ikuta, K. , 2008, “ ‘Membrane Micro Emboss Following Excimer Laser Ablation (MeME-X) Process’ for Pressure-Driven Micro Active Catheter,” 21st IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Wuhan, China, Jan. 13–17, pp. 62–65.
Huber, J. E. , Fleck, N. A. , and Ashby, M. F. , 1997, “ The Selection of Mechanical Actuators Based on Performance Indices,” Proc. R. Soc. London A, 453(1965), pp. 2185–2205. [CrossRef]
Chang, J. K. , Chung, S. , Lee, Y. , Park, J. , Lee, S. K. , Yang, S. K. , Moon, S. Y. , Tschepe, J. , Chee, Y. , and Han, D. C. , 2002, “ Development of Endovascular Microtools,” J. Micromech. Microeng., 12(6), p. 824. [CrossRef]
Mineta, T. , Mitsui, T. , Watanabe, Y. , Kobayashi, S. , Haga, Y. , and Esashi, M. , 2001, “ Batch Fabricated Flat Meandering Shape Memory Alloy Actuator for Active Catheter,” Sens. Actuators A, 88(2), pp. 112–120. [CrossRef]
Namazu, T. , Komatsubara, M. , Nagasawa, H. , Miki, T. , Tsurui, T. , and Inoue, S. , 2011, “ Titanium-Nickel Shape Memory Alloy Spring Actuator for Forward-Looking Active Catheter,” J. Metall., 2011, p. 685429. [CrossRef]
Haga, Y. , Esashi, M. , and Maeda, S. , 2000, “ Bending, Torsional and Extending Active Catheter Assembled Using Electroplating,” 13th Annual International Conference on Micro Electro Mechanical Systems (MEMS), Miyazaki, Japan, Jan. 23–27, pp. 181–186.
Lim, G. , Minami, K. , and Sugihara, M. , 1995, “ Active Catheter With Multi-Link Structure Based on Silicon Micromachining,” IEEE Micro Electro Mechanical Systems (MEMS), Amsterdam, The Netherlands, Jan. 29–Feb. 2, pp. 116–121.
Fu, Y. , L,i, X. , Wang, S. , Liu, H. , and Liang, Z. , 2008, “ Research on the Axis Shape of an Active Catheter,” Int. J. Med. Rob., 4(1), pp. 69–76. [CrossRef]
Haga, Y. , Tanahashi, Y. , and Esashi, M. , 1998, “ Small Diameter Active Catheter Using Shape Memory Alloy,” 11th Annual International Workshop on Micro Electro Mechanical Systems (MEMS), Heidelberg, Germany, Jan. 25–29, pp. 419–424.
Fukuda, T. , Guo, S. , and Kosuge, K. , 1994, “ Micro Active Catheter System With Multi Degrees of Freedom,” IEEE International Conference on Robotics and Automation (ICRA), San Diego, CA, May 8–13, pp. 2290–2295.
Mizuno, S. , Nakajima, M. , Yasuda, K. , Kobayashi, M. , Mukai, H. , Hirano, S. , and Kawai, K. , 1994, “ Shape Memory Alloy Catheter System for Peroral Pancreatoscopy Using an Ultrathin-Caliber Endoscope,” Endoscopy, 26(8), pp. 676–680. [CrossRef] [PubMed]
Takizawa, H. , Tosaka, H. , Ohta, R. , Kaneko, S. , and Ueda, Y. , 1999, “ Development of a Microfine Active Bending Catheter Equipped With MIF Tactile Sensors,” 12th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Orlando, FL, Jan 17–21, pp. 412–417.
Szewczyk, J. , Marchandise, E. , Flaud, P. , Royon, L. , and Blanc, R. , 2011, “ Active Catheters for Neuroradiology,” J. Rob. Mechatronics, 23(1), pp. 105–115. [CrossRef]
Clogenson, H. C. M. , Simonetto, A. , and van den Dobbelsteen, J. J. , 2015, “ Design Optimization of a Deflectable Guidewire,” Med. Eng. Phys., 37(1), pp. 138–144. [CrossRef] [PubMed]
Wilbring, M. , Rehm, M. , Ghazy, T. , Amler, M. , Matschke, K. , and Kappert, U. , 2016, “ Aortic Arch Mapping by Computed Tomography for Actual Anatomic Studies in Times of Emerging Endovascular Therapies,” Ann. Vasc. Surg., 30, pp. 181–191. [CrossRef] [PubMed]
Vučurević, G. , Marinković, S. , Puškaš, L. , Kovačević, I. , Tanasković, S. , Radak, D. , and Ilić, A. , 2013, “ Anatomy and Radiology of the Variations of Aortic Arch Branches in 1,266 Patients,” Folia Morphol., 72(2), pp. 113–122. [CrossRef]
Demertzis, S. , Hurni, S. , Stalder, M. , Gahl, B. , Herrmann, G. , and Van den Berg, J. , 2010, “ Aortic Arch Morphometry in Living Humans,” J. Anat., 217(5), pp. 588–596. [CrossRef] [PubMed]
Chiu, P. , Lee, H. P. , Venkatesh, S. K. , and Ho, P. , 2013, “ Anatomical Characteristics of the Thoracic Aortic Arch in an Asian Population,” Asian Cardiovasc. Thorac. Ann., 21(2), pp. 151–159. [CrossRef] [PubMed]
Finlay, A. , Johnson, M. , and Forbes, T. L. , 2012, “ Surgically Relevant Aortic Arch Mapping Using Computed Tomography,” Ann. Vasc. Surg., 26(4), pp. 483–490. [CrossRef] [PubMed]
Shin, I. Y. , Chung, Y. G. , Shin, W. H. , Im, S. B. , Hwang, S. C. , and Kim, B.-T. , 2008, “ A Morphometric Study on Cadaveric Aortic Arch and Its Major Branches in 25 Korean Adults: The Perspective of Endovascular Surgery,” J. Korean Neurosurg. Soc., 44(2), pp. 78–83. [CrossRef] [PubMed]
Noordergraaf, A. , Verdouw, D. , and Boom, H. B. , 1963, “ The Use of an Analog Computer in a Circulation Model,” Prog. Cardiovasc. Dis., 5(5), pp. 419–439. [CrossRef] [PubMed]
Kahraman, H. , Ozaydin, M. , Varol, E. , Aslan, S. M. , Dogan, A. , Altinbas, A. , Demir, M. , Gedikli, O. , Acar, G. , and Ergene, O. , 2006, “ The Diameters of the Aorta and Its Major Branches in Patients With Isolated Coronary Artery Ectasia,” Texas Heart Inst. J., 33(4), pp. 463–468.
Turba, U. C. , Uflacker, R. , Bozlar, U. , and Hagspiel, K. D. , 2009, “ Normal Renal Arterial Anatomy Assessed by Multidetector CT Angiography: Are There Differences Between Men and Women?,” Clin. Anat., 22(2), pp. 236–242. [CrossRef] [PubMed]
Kaufman, J. , and Lee, M. , 2004, Vascular and Interventional Radiology: The Requisites, Elsevier, Amsterdam, The Netherlands.
Rogers, I. S. , Massaro, J. M. , Truong, Q. A. , Mahabadi, A. A. , Kriegel, M. F. , Fox, C. S. , Thanassoulis, G. , Isselbacher, E. M. , Hoffmann, U. , and O'Donnell, C. J. , 2013, “ Distribution, Determinants, and Normal Reference Values of Thoracic and Abdominal Aortic Diameters by Computed Tomography (From the Framingham Heart Study),” Am. J. Cardiol., 111(10), pp. 1510–1516. [CrossRef] [PubMed]
Pedersen, O. M. , Aslaksen, A. , and Vik-Mo, H. , 1993, “ Ultrasound Measurement of the Luminal Diameter of the Abdominal Aorta and Iliac Arteries in Patients Without Vascular Disease,” J. Vasc. Surg., 17(3), pp. 596–601. [CrossRef] [PubMed]
Shah, P. M. , Scarton, H. A. , and Tsapogas, M. J. , 1978, “ Geometric Anatomy of the Aortic–Common Iliac Bifurcation,” J. Anat., 126(3), pp. 451–458. [PubMed]
Silveira, L. A. , da Silveira, F. B. C. , and Fazan, V. P. S. , 2009, “ Arterial Diameter of the Celiac Trunk and Its Branches. Anatomical Study,” Acta Cir. Bras., 24(1), pp. 43–47. [CrossRef] [PubMed]
Malnar, D. , Klasan, G. S. , Miletić, D. , Bajek, S. , Vranić, T. S. , Arbanas, J. , Bobinac, D. , and Coklo, M. , 2010, “ Properties of the Celiac Trunk–Anatomical Study,” Coll. Antropol., 34(3), pp. 917–921. [PubMed]
Clogenson, H. C. M. , van Lith, J. Y. , Dankelman, J. , Melzer, A. , and van den Dobbelsteen, J. J. , 2015, “ Multi-Selective Catheter for MR-Guided Endovascular Interventions,” Med. Eng. Phys., 37(7), pp. 623–630. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 4

Manoeuver for entering a lateral artery: (a) general description, (b) pointing toward the ostium, (c) entering into the ostium, and (d) case of a large original artery

Grahic Jump Location
Fig. 3

Radius of curvature versus number of SMA actuators

Grahic Jump Location
Fig. 2

Active catheter featured with three SMA actuators (figure inspired from Ref. [27])

Grahic Jump Location
Fig. 1

SMA actuated catheter (principle) (figure inspired from Ref. [27])

Grahic Jump Location
Fig. 9

Radial anchoring of the SMA wire

Grahic Jump Location
Fig. 10

The active device and its external covering catheter

Grahic Jump Location
Fig. 11

Cross-sectional dimensions of the flexible part

Grahic Jump Location
Fig. 5

Description of a device comprising two active sections; (a) general description; (b) detail of an active section

Grahic Jump Location
Fig. 8

Axial anchoring of the SMA wire along the core structure

Grahic Jump Location
Fig. 6

Relation between the angle and the different radii of curvature

Grahic Jump Location
Fig. 7

Cross-sectional views of the flexible part and of the rigid part of an active section

Grahic Jump Location
Fig. 15

Experimental setup

Grahic Jump Location
Fig. 16

Control pedal used for in vitro and in vivo experiments

Grahic Jump Location
Fig. 12

Final prototype in maximal bending conditions

Grahic Jump Location
Fig. 13

Test on a silicon-based anatomical phantom

Grahic Jump Location
Fig. 14

Transfer function between the current intensity i and the bending angle θ

Grahic Jump Location
Fig. 17

Evolution of θmax with respect to the number of activations of the SMA (distal segment)

Grahic Jump Location
Fig. 18

Accuracy of the theoretical model in predicting θmax

Grahic Jump Location
Fig. 19

Experimental setup for in vivo validation

Grahic Jump Location
Fig. 20

(a) Successful cannulations of right renal artery, left renal artery, celiac trunk, left subclavian artery, common bicarotid and right subclavian trunk; (b) angiographic control after cannulation of the right and left renal arteries, and of the celiac trunk

Grahic Jump Location
Fig. 21

Expression of θmax in function of r according to the theoretical model



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In