0
Research Papers

Low-Cost Thermal Shield for Rapid Diagnostic Tests Using Phase Change Materials

[+] Author and Article Information
Luis R. Soenksen

Department of Mechanical Engineering,
Massachusetts Institute of Technology,
77 Massachusetts Ave,
Cambridge, MA 02139
e-mail: soenksen@mit.edu

David A. Martínez-Corona

Department of Animal Sciences,
Universitat Politecnica de Valencia
Camí de Vera, s/n,
València 46022, Spain
e-mail: david.alb.corona@gmail.com

Sofía Iñiguez de Gante

School of Design,
National College of Art and Design,
Ireland100 Thomas St, Merchants Quay D08,
Dublin 8, Ireland
e-mail: sofiainiguezg@gmail.com

Pierre S. Phabmixay

Department of Mechanical Engineering,
Massachusetts Institute of Technology,
77 Massachusetts Ave,
Cambridge, MA 02139
e-mail: pierresp@mit.edu

Mauricio J. Marongiu Maggi

PCM Thermal Solutions Inc.,
13400 South Route 59, Ste. 116-264,
Plainfield, IL 60585
e-mail: maurice@pcm-solutions.com

1Corresponding author.

Manuscript received July 14, 2017; final manuscript received December 12, 2017; published online January 30, 2018. Assoc. Editor: Xiaoming He.

J. Med. Devices 12(1), 011009 (Jan 30, 2018) (12 pages) Paper No: MED-17-1268; doi: 10.1115/1.4038898 History: Received July 14, 2017; Revised December 12, 2017

The shelf life of point-of-care and rapid diagnostic tests (POC-RDTs) is commonly compromised by abrupt temperature changes during storage, transportation, and use. This situation is especially relevant in tropical regions and resource-constrained settings where cold chain may be unreliable. Here, we report the use of novel and low-cost passive thermal shield (TS) made from laminated phase change material (PCM) to reduce thermal overload in POC-RDTs. Validation of the proposed design was done through numerical simulation and testing of an octadecane shield prototype in contact with a lateral flow immunoassay. The use of our TS design provided 30–45 min delay in thermal equilibration under constant and oscillating heat load challenges resembling those of field use. The addition of a thin PCM protection layer to POC-RDTs can be a cost-effective, scalable, and reliable solution to provide additional thermal stability to these devices.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Chan, C. P. Y. , Mak, W. C. , Cheung, K. Y. , Sin, K. K. , Yu, C. M. , Rainer, T. H. , and Renneberg, R. , 2013, “Evidence-Based Point-of-Care Diagnostics: Current Status and Emerging Technologies,” Annu. Rev. Anal. Chem., 6, pp. 191–211. [CrossRef]
Drain, P. K. , Hyle, E. P. , Noubary, F. , Freedberg, K. A. , Wilson, D. , Bishai, W. R. , Rodriguez, W. , and Bassett, I. V. , 2014, “Diagnostic Point-of-Care Tests in Resource-Limited Settings,” Lancet Infect. Dis., 14(3), pp. 239–249. [CrossRef] [PubMed]
Jani, I. V. , and Peter, T. F. , 2013, “How Point-of-Care Testing Could Drive Innovation in Global Health,” N. Engl. J. Med., 368(24), pp. 2319–2324. [CrossRef] [PubMed]
Vashist, S. K. , Luppa, P. B. , Yeo, L. Y. , Ozcan, A. , and Luong, J. H. , 2015, “Emerging Technologies for Next-Generation Point-of-Care Testing,” Trends Biotechnol., 33(11), pp. 692–705. [CrossRef] [PubMed]
Chin, C. D. , Linder, V. , and Sia, S. K. , 2007, “Lab-on-a-Chip Devices for Global Health: Past Studies and Future Opportunities,” Lab Chip, 7(1), pp. 41–57. [CrossRef] [PubMed]
Gubala, V. , Harris, L. F. , Ricco, A. J. , Tan, M. X. , and Williams, D. E. , 2011, “Point of Care Diagnostics: Status and Future,” Anal. Chem., 84(2), pp. 487–515. [CrossRef] [PubMed]
Gervais, L. , De Rooij, N. , and Delamarche, E. , 2011, “Microfluidic Chips for Point‐of‐Care Immunodiagnostics,” Adv. Mater., 23(24), pp. H151–H176. [CrossRef] [PubMed]
Wongsrichanalai, C. , Barcus, M. J. , Muth, S. , Sutamihardja, A. , and Wernsdorfer, W. H. , 2007, “A Review of Malaria Diagnostic Tools: Microscopy and Rapid Diagnostic Test (RDT),” Am. J. Trop. Med. Hyg., 77(Suppl. 6), pp. 119–127. http://www.ajtmh.org/content/journals/10.4269/ajtmh.2007.77.119 [PubMed]
Kumar, S. , Kumar, S. , Ali, M. , Anand, P. , Agrawal, V. V. , John, R. , Maji, S. , and Malhotra, B. D. , 2013, “Microfluidic‐Integrated Biosensors: Prospects for Point‐of‐Care Diagnostics,” Biotechnol. J., 8(11), pp. 1267–1279. [CrossRef] [PubMed]
Palamountain, K. M. , Baker, J. , Cowan, E. P. , Essajee, S. , Mazzola, L. T. , Metzler, M. , Schito, M. L. , Stevens, W. S. , Young, G. J. , and Domingo, G. J. , 2012, “Perspectives on Introduction and Implementation of New Point-of-Care Diagnostic Tests,” J. Infect. Dis., 205(Suppl. 2), pp. S181–S190.
Bamberg, R. , Schulman, K. , MacKenzie, M. , Moore, J. , and Olchesky, S. , 2005, “Effect of Adverse Storage Conditions on the Performance of Glucometer Test Strips,” Clin. Lab. Sci., 18(4), pp. 203–209. [PubMed]
Louie, R. F. , Sumner, S. L. , Belcher, S. , Mathew, R. , Tran, N. K. , and Kost, G. J. , 2009, “Thermal Stress and Point-of-Care Testing Performance: Suitability of Glucose Test Strips and Blood Gas Cartridges for Disaster Response,” Disaster Med. Public Health Preparedness, 3(1), pp. 13–17. [CrossRef]
Anderson, D. A. , Crowe, S. M. , and Garcia, M. , 2011, “Point-of-Care Testing,” Curr. HIV/AIDS Rep., 8(1), pp. 31–37. [CrossRef] [PubMed]
Miller, E. , and Sikes, H. D. , 2015, “Addressing Barriers to the Development and Adoption of Rapid Diagnostic Tests in Global Health,” Nanobiomedicine, 2, p. 6. [CrossRef] [PubMed]
WHO, 2015, “Good Practices for Selecting and Procuring Rapid Diagnostic Tests for Malaria,” World Health Organization, Geneva, Switzerland, accessed Dec. 1, 2017, http://www.who.int/malaria/publications/atoz/9789241501125/en/
Gomes, L. T. , Tada, M. S. , Katsuragawa, T. H. , Povoa, M. M. , Viana, G. M. , Maria das Gracas, C. A. , de Santana-Filho, F. S. , Arcanjo, A. R. L. , Couto, A. A. , Calvosa, V. S. , and Nery, A. F. , 2013, “Low Sensitivity of Malaria Rapid Diagnostic Tests Stored at Room Temperature in the Brazilian Amazon Region,” J. Infect. Dev. Countries, 7(3), pp. 243–252.
Mikhail, A. F. , Leslie, T. J. , Mayan, M. I. , Zekria, R. , Mohammad, N. , Hasanzai, M. A. , Safi, N. , Whitty, C. J. , and Rowland, M. , 2011, “Field Trial of Three Different Plasmodium Vivax-Detecting Rapid Diagnostic Tests With and Without Evaporative Cool Box Storage in Afghanistan,” Malaria J., 10(1), p. 169. [CrossRef]
Lam, M. , Louie, R. F. , Curtis, C. M. , Ferguson, W. J. , Vy, J. H. , Truong, A. T. , Sumner, S. L. , and Kost, G. J. , 2014, “Short-Term Thermal-Humidity Shock Affects Point-of-Care Glucose Testing Implications for Health Professionals and Patients,” J. Diabetes Sci. Technol., 8(1), pp. 83–88. [CrossRef] [PubMed]
Albertini, A. , Lee, E. , Coulibaly, S. O. , Sleshi, M. , Faye, B. , Mationg, M. L. , Ouedraogo, K. , Tsadik, A. G. , Feleke, S. M. , Diallo, I. , and Gaye, O. , 2012, “Malaria Rapid Diagnostic Test Transport and Storage Conditions in Burkina Faso, Senegal, Ethiopia and the Philippines,” Malaria J., 11(1), p. 406. [CrossRef]
Ginsberg, B. H. , 2009, “Factors Affecting Blood Glucose Monitoring: Sources of Errors in Measurement,” J. Diabetes Sci. Technol., 3(4), pp. 903–913. [CrossRef] [PubMed]
Yager, P. , Domingo, G. J. , and Gerdes, J. , 2008, “Point-of-Care Diagnostics for Global Health,” Annu. Rev. Biomed. Eng., 10, pp. 107–144. [CrossRef] [PubMed]
Jorgensen, P. , Chanthap, L. O. N. , Rebueno, A. , Tsuyuoka, R. , and Bell, D. , 2006, “Malaria Rapid Diagnostic Tests in Tropical Climates: The Need for a Cool Chain,” Am. J. Trop. Med. Hyg., 74(5), pp. 750–754. http://www.ajtmh.org/docserver/fulltext/14761645/74/5/0740750.pdf?expires=1515756854&id=id&accname=guest&checksum=5DE111C39D0A03D5C882F91306003EF6 [PubMed]
Somero, G. N. , 1995, “Proteins and Temperature,” Annu. Rev. Physiol., 57(1), pp. 43–68. [CrossRef] [PubMed]
Bischof, J. C. , and He, X. , 2006, “Thermal Stability of Proteins,” Ann. New York Acad. Sci., 1066(1), pp. 12–33. [CrossRef]
Argentieri, M. C. , Pilla, D. , Vanzati, A. , Lonardi, S. , Facchetti, F. , Doglioni, C. , Parravicini, C. , and Cattoretti, G. , 2013, “Antibodies Are Forever: A Study Using 12–26‐Year‐Old Expired Antibodies,” Histopathology, 63(6), pp. 869–876. [CrossRef] [PubMed]
Sydow, J. F. , Lipsmeier, F. , Larraillet, V. , Hilger, M. , Mautz, B. , Mølhøj, M. , Kuentzer, J. , Klostermann, S. , Schoch, J. , Voelger, H. R. , and Regula, J. T. , 2014, “Structure-Based Prediction of Asparagine and Aspartate Degradation Sites in Antibody Variable Regions,” PloS One, 9(6), p. e100736. [CrossRef] [PubMed]
Chiodini, P. L. , Bowers, K. , Jorgensen, P. , Barnwell, J. W. , Grady, K. K. , Luchavez, J. , Moody, A. H. , Cenizal, A. , and Bell, D. , 2007, “The Heat Stability of Plasmodium Lactate Dehydrogenase-Based and Histidine-Rich Protein 2-Based Malaria Rapid Diagnostic Tests,” Trans. R. Soc. Trop. Med. Hyg., 101(4), pp. 331–337. [CrossRef] [PubMed]
WHO, 2015, “TGS 2 Establishing Stability of an In Vitro Diagnostic for WHO Prequalification,” EMP Prequalification Diagnostics, World Health Organization, Geneva, Switzerland, accessed Dec. 1, 2017, http://www.who.int/diagnostics_laboratory/guidance/160613_tgs2_ stability.pdf
Barbé, B. , Gillet, P. , Beelaert, G. , Fransen, K. , and Jacobs, J. , 2012, “Assessment of Desiccants and Their Instructions for Use in Rapid Diagnostic Tests,” Malaria J., 11(1), p. 326. [CrossRef]
Truong, A. T. , Louie, R. F. , Vy, J. H. , Curtis, C. M. , Ferguson, W. J. , Lam, M. , Sumner, S. , and Kost, G. J. , 2014, “Effects of Humidity on Foil and Vial Packaging to Preserve Glucose and Lactate Test Strips for Disaster Readiness,” Disaster Med. Public Health Preparedness, 8(1), pp. 51–57. [CrossRef]
Ramachandran, S. , Fu, E. , Lutz, B. , and Yager, P. , 2014, “Long-Term Dry Storage of an Enzyme-Based Reagent System for ELISA in Point-of-Care Devices,” Analyst, 139(6), pp. 1456–1462. [CrossRef] [PubMed]
Learmonth, K. M. , Chiu, C. Y. , Galang, H. , Nawang, M. J. , and Dax, E. M. , 2011, “Assessment of the Heat Stability of Seven Rapid HIV Assays,” Trans. R. Soc. Trop. Med. Hyg., 105(7), pp. 388–395. [CrossRef] [PubMed]
Chin, C. D. , Linder, V. , and Sia, S. K. , 2012, “Commercialization of Microfluidic Point-of-Care Diagnostic Devices,” Lab Chip, 12(12), pp. 2118–2134. [CrossRef] [PubMed]
Tantra, R. , and van Heeren, H. , 2013, “Product Qualification: A Barrier to Point-of-Care Microfluidic-Based Diagnostics?,” Lab Chip, 13(12), pp. 2199–2201. [CrossRef] [PubMed]
WHO, 2006, “Regulation of In Vitro Diagnostics: A Global Perspective,” Annex in: Diagnostics for Tuberculosis: Global Demand and Market Potential, World Health Organization, Geneva, Switzerland, pp. 194–203.
Smith, S. , Sewart, R. , Land, K. , Roux, P. , Gärtner, C. , and Becker, H. , 2016, “Blister Pouches for Effective Reagent Storage and Release for Low Cost Point-of-Care Diagnostic Applications,” Proc. SPIE, 9705, p. 97050F.
Oró, E. , De Gracia, A. , Castell, A. , Farid, M. M. , and Cabeza, L. F. , 2012, “Review on Phase Change Materials (PCMs) for Cold Thermal Energy Storage Applications,” Appl. Energy, 99, pp. 513–533. [CrossRef]
Chanthap, L. , Ariey, F. , Socheat, D. , Tsuyuoka, R. , and Bell, D. , 2010, “Low-Technology Cooling Box for Storage of Malaria RDTs and Other Medical Supplies in Remote Areas,” Malaria J., 9(1), p. 31. [CrossRef]
Buser, J. R. , Diesburg, S. , Singleton, J. , Guelig, D. , Bishop, J. D. , Zentner, C. , Burton, R. , LaBarre, P. , Yager, P. , and Weigl, B. H. , 2015, “Precision Chemical Heating for Diagnostic Devices,” Lab Chip, 15(23), pp. 4423–4432. [CrossRef] [PubMed]
Farid, M. M. , Khudhair, A. M. , Razack, S. A. K. , and Al-Hallaj, S. , 2004, “A Review on Phase Change Energy Storage: Materials and Applications,” Energy Convers. Manage., 45(9), pp. 1597–1615. [CrossRef]
Ho, C. J. , and Cheng, Y. T. , 1999, “On Cooling Behavior of a Vertical Plate in a Phase Change Material/Water Composite Enclosure Under Pulsating Heat Load,” Heat Mass Transfer, 34(6), pp. 509–515. [CrossRef]
Ying, Y. , Hongyuan, Y. , and Haiying, S. , 2010, “Development of a Low-Temperature Phase Transforming Composed Material for Cool Storage,” J. Supercond. Novel Magn., 23(6), pp. 1115–1117. [CrossRef]
Jamekhorshid, A. , Sadrameli, S. M. , and Farid, M. , 2014, “A Review of Microencapsulation Methods of Phase Change Materials (PCMs) as a Thermal Energy Storage (TES) Medium,” Renewable Sustainable Energy Rev., 31, pp. 531–542. [CrossRef]
Cho, J. S. , Kwon, A. , and Cho, C. G. , 2002, “Microencapsulation of Octadecane as a Phase-Change Material by Interfacial Polymerization in an Emulsion System,” Colloid Polym. Sci., 280(3), pp. 260–266. [CrossRef]
Millipore Corporation, 2014, “Rapid Lateral Flow Test Strips. Considerations for Product Development,” Millipore Corporation, Bedford, MA, accessed Dec. 1, 2017, https://www.emdmillipore.com/Web-US-Site/en_CA/-/USD/ShowDocument-Pronet?id=201306.12550
Posthuma-Trumpie, G. A. , Korf, J. , and van Amerongen, A. , 2009, “Lateral Flow (Immuno) Assay: Its Strengths, Weaknesses, Opportunities and Threats. A Literature Survey,” Anal. Bioanal. Chem., 393(2), pp. 569–582. [CrossRef] [PubMed]
Pauling, L. , 1988, General Chemistry, W. H., Freeman , ed., Courier Corporation, North Chelmsford, MA, pp. 564–569.
O'Farrell, B. , 2009, “Evolution in Lateral Flow–Based Immunoassay Systems,” Lateral Flow Immunoassay, Humana Press, New York, pp. 1–33. [CrossRef] [PubMed] [PubMed]
Wong, R. , and Tse, H. , eds., 2009, Lateral Flow Immunoassay, Humana Press, Totowa, NJ, pp. 1–158. [CrossRef] [PubMed] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Proposed adaptation of a PCM thermal shield in a rapid diagnostic test: (a) thermal shield assembled at the bottom of POC-RDT strip, (b) commercially available pregnancy POC-RDT cassette with assembled thermal shield, and (c) thin film of POC-RDT in addition to the thermal shield which does not substantially increase test thickness. PCM = phase change material.

Grahic Jump Location
Fig. 2

Components and assembly of the POC-RDT thermal shield. Layers of thermally isolating and thermally conductive material are laminated to enclose a PCM material in a thin form factor. The thermal shield is then attached to the bottom of a rapid diagnostic test to provide thermal protection in temperature sensitive zones without significantly affect the design of the test. LFIA = lateral flow immunoassay.

Grahic Jump Location
Fig. 3

Shield assembly on POC-RDT and setup for thermal testing: (a) thermal shield prototype with detail on PCM layer and thermally conductive region of the laminated enclosure. (b) schematic of the thermal testing setup. Thermal sensors DS18B20 (Maxim Integrated Products, Sunnyvale, CA) were in contact with the most thermally sensitive area of the LFIA strip in both the control and the shielded prototype. Ambient temperature was controlled within the chamber using an incandescent lamp. The thermal shield was attached to the bottom of the rapid test using a PCM laminate. The shielded prototype and its control were both subject to 180 Hz vibration using a piezoelectric actuator located below the POC-RDTS throughout the duration of the experiment. ADC = analog to digital converter; RDT = rapid diagnostic test; PCM = phase change material.

Grahic Jump Location
Fig. 4

The 1D thermal model of thermal shield and behavior trends for specific heat capacity c, density ρ, and heat conductivity k of an archetypical POC-RDT + PCM construct. (a) The test strip (domain 1) and the PCM (domain 2) are depicted as the two main bulk components in the model. Tamb is the ambient temperature, and the temperature of interest is the average temperature of the test strip. (b) The rectangular function model for specific heat variation of a PCM, with a melting range ΔT, which relates to the specific heat L. (c) The step function models the shift of thermal conductivity k and the material density ρ in relationship to temperature T. PCM = phase change material.

Grahic Jump Location
Fig. 5

Generalized thermal network (electrical analogy) of the 1D heat system. A quasi-state-state assumption is used to justify this electrical analog. are internal resistances of each domain, are internal capacitances, and are external resistances.

Grahic Jump Location
Fig. 7

Representative response of shielded and unshielded (ambient) POC-RDT to a field-like thermal challenge. The absence of peaks and valleys in shielded response denotes damping and thermal switching behavior provided by the PCM. ADC = analog to digital converter; RDT = rapid diagnostic test; PCM = phase change material; POC-RDT + TS = point-of-care rapid diagnostic test with thermal shield.

Grahic Jump Location
Fig. 6

Model and experimental results of basic thermal challenge. (a) Shows an isometric view that represents a common situation, where a rapid diagnostic test (RDT) under solar load. (b) Shows simulation outputs for the first proposed phase of the thermal challenge for both shielded and unshielded POC-RDTs, while (c) shows the simulation results second phase of the challenge in which the effect of PCM is recognizable for shielded systems. (d) Shows experimental temperature measurements for three unshielded LFIA POC-RDTs and three shielded LFIA POC-RDTs prototypes during the first phase of the thermal challenge, while (e) shows measurements performed during the second phase of the thermal challenge. Notice the presence of averaged traces and shaded error bars for experimental measurements of both shielded and unshielded POC-RDT prototypes.

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In