Research Papers

A Novel, Needle-Array Dry-Electrode With Stainless Steel Micro-Tips, for Electroencephalography Monitoring

[+] Author and Article Information
J. K. Radhakrishnan

Defence Bioengineering and
Electromedical Laboratory (DEBEL), DRDO,
Bangalore 560093, India
e-mail: jk.radhakrishnan@debel.drdo.in

S. Nithila, S. N. Kartik, U. K. Singh

Defence Bioengineering and
Electromedical Laboratory (DEBEL), DRDO,
Bangalore 560093, India

T. Bhuvana

Indian Institute of Technology Kanpur,
Kanpur 208016, India

G. U. Kulkarni

Jawaharlal Nehru Centre for Advanced Scientific
Research (JNCASR),
Bangalore 560093, India

1Corresponding author.

Manuscript received October 3, 2017; final manuscript received August 16, 2018; published online September 21, 2018. Assoc. Editor: Chris Rylander.

J. Med. Devices 12(4), 041001 (Sep 21, 2018) (7 pages) Paper No: MED-17-1321; doi: 10.1115/1.4041227 History: Received October 03, 2017; Revised August 16, 2018

A novel, needle array dry electrode consisting of 10 × 10 array of stainless steel (SS) Microtips was developed for electroencephalography (EEG) monitoring. The developed dry electrode uses commercially available, inexpensive, SS acupuncture needles certified for invasive use, to collect the EEG signal. The microtips of the acupuncture needles project out of a flat Teflon base by approximately 150 μm. Mechanical failure analysis was carried out, with theoretical calculations for individual needles and experimental measurements with a universal testing machine (UTM). The theoretically calculated critical load for failure for individual needle was 0.88 N, while the UTM measurements show the failure occurring at 0.95 N; this difference is probably due to the simplified assumptions used in calculations. The UTM measurements of the individual needle applied against a Silicone elastomer reveal that the force required for the penetration of the needle of the electrode into skin maybe as low as 0.01 N. Needle array insertion into silicone elastomer sheet and its optical inspection was carried out to assess the ability of the microneedles to penetrate the skin. The impedance of the electrode, measured in three electrode configuration in 0.9% NaCl solution, was approximately 6.8KΩ at 20 Hz, which is sufficiently low to fulfill the requirements of biopotential measurement. The construction and characteristics of the developed needle array dry electrode show that they are suitable for penetrating the stratum corneum of the skin and acquire the EEG signal directly from the interstitial fluidic layer underneath. The construction of the electrode and its mechanical and electrical characteristics show that it is a promising dry electrode for long duration EEG Monitoring.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Chi, Y. M. , Jung, T. P. , and Cauwenberghs, G. , 2010, “ Dry-Contact and Noncontact Biopotential Electrodes: Methodological Review,” IEEE Rev. Biomed. Eng., 3, pp. 106–119. [CrossRef] [PubMed]
Chiou, J. C. , Ko, L. W. , Lin, C. T. , Hong, C. T. , Jung, T. P. , Liang, S. F. , and Jeng, J. L. , 2006, “ Using Novel MEMS EEG Sensors in Detecting Drowsiness Application,” IEEE Biomedical Circuits and Systems Conference (BioCAS), London, Nov. 29–Dec. 1, pp. 33–36.
Griss, P. , Enoksson, P. , Tolvanen-Laakso, H. K. , Meriläinen, P. , Ollmar, S. , and Stemme, G. , 2001, “ Micromachined Electrodes for Biopotential Measurements,” J. Microelectro-Mech. Syst., 10(1), pp. 10–16. [CrossRef]
Griss, P. , Enoksson, P. , and Stemme, G. , 2002, “ Micromachined Barbed Spikes for Mechanical Chip Attachment,” Sens. Actuators A: Phys., 95(2–3), pp. 94–99. [CrossRef]
Wang, Y. , Guo, K. , Pei, W. H. , Gui, Q. , Li, X. Q. , Chen, H. D. , and Yang, J. H. , 2011, “ Fabrication of Dry Electrode for Recording Bio-Potentials,” Chin. Phys. Lett., 28(1), p. 010701. [CrossRef]
Ng, W. C. , Seet, H. L. , Lee, K. S. , Ning, N. , Tai, W. X. , Sutedja, M. , Fuh, J. Y. H. , and Li, X. P. , 2009, “ Micro-Spike EEG Electrode and the Vacuum-Casting Technology for Mass Production,” J. Mater. Process. Technol., 209(9), pp. 4434–4438. [CrossRef]
Ren, L. , Jiang, Q. , Chen, K. , Chen, Z. , Pan, C. , and Jiang, L. , 2016, “ Fabrication of a Microneedle Array Electrode by Thermal Drawing for Biopotential Monitoring,” Sensors, 16(6), p. 908. [CrossRef]
Yang, S. , Feng, Y. , Zhang, L. , Chen, N. , Yuan, W. , and Jin, T. , 2012, “ A Scalable Fabrication Process of Polymer Microneedles,” Int. J. Nanomed., 7, pp. 1415–1422.
Gittard, S. D. , Ovsianikov, A. , Monteiro-Riviere, N. A. , Lusk, J. , Morel, P. , Minghetti, P. , Lenardi, C. , Chichkov, B. N. , and Narayan, R. J. , 2009, “ Fabrication of Polymer Microneedles Using a Two-Photon Polymerization and Micromolding Process,” J. Diabetes Sci. Technol., 3(2), pp. 304–311. [CrossRef] [PubMed]
Matteucci, M. , Carabalona, R. , Casella, M. , Di Fabrizio, E. , Gramatica, F. , Di Rienzo, M. , Snidero, E. , Gavioli, L. , and Sancrotti, M. , 2007, “ Micropatterned Dry Electrodes for Brain–Computer Interface,” Microelectron. Eng., 84(5–8), pp. 1737–1740. [CrossRef]
Ruffini, G. , Dunne, S. , Farr´es, E. , Marco-Pallar´es, J. , Ray, C. , Mendoza, E. , Silva, R. , and Grau, C. , 2006, “ A Dry Electrophysiology Electrode Using CNT Arrays,” Sens. Actuators A, 132(1), pp. 34–41. [CrossRef]
Watts, P. C. , Lyth, S. M. , Mendoza, S. M. , Silva, E. , and Ravi, S. P. , 2006, “ Polymer Supported Carbon Nanotube Arrays for Field Emission and Sensor Devices,” Appl. Phys. Lett., 89 (10), p. 103113. [CrossRef]
Radhakrishnan, J. K. , Bhusan, H. , Pandian, P. S. , Rao, K. U. B. , Padaki, V. C. , Aatre, K. , Xie, J. , Abraham, J. K. , and Varadan, V. K. , 2008, “ Growth of CNT Array for Physiological Monitoring Applications,” Proc. SPIE, 6931, P. 69310P.
Zhou, F. W. , Song, R. , Pan, X. , Peng, Y. , Qi, X. , Peng, J. , Hui, K. S. , and Hui, K. N. , 2013, “ Fabrication and Impedance Measurement of Novel Metal Dry Bioelectrode,” Sens. Actuators A: Phys., 201, pp. 127–133. [CrossRef]
Verbaan, F. J. , Bal, S. M. , Van den Berg, D. J. , Groenink, W. H. , Verpoorten, H. , Lüttge, R. , and Bouwstra, J. A. , 2007, “ Assembled Microneedle Arrays to Enhance the Transport of Compounds Varying Over a Large Range of Molecular Weight Across Human Dermatomed Skin,” J. Controlled Release, 117(2), pp. 238–245. [CrossRef]
Kim, K. , Park, D. S. , Lu, H. M. , Che, W. , Kim, K. , Lee, J. B. , and Ahn, C. H. , 2004, “ A Tapered Hollow Metallic Microneedle Array Using Backside Exposure of SU,” J. Micromech. Microeng., 14(4), pp. 597–603. [CrossRef]
Neethu, S. , Kulkarni, G. U. , Radhakrishnan, J. K. , and Padaki, V. C. , 2013, “ Tungsten Microneedle Array Based Dry Electrodes for Biopotential Monitoring,” First National Conference on Micro and Nanofabrication, Bangalore, India, Jan. 21–23, p. 302.
Radhakrishnan, J. K. , Padaki, V. C. , Bhuvana, T. , and Kulkarni, G. U. , 2014, “ A Needle Array Electrode for Monitoring Physiological Electrical Signals and a Method of Manufacturing,” Indian Technical Patent Application No: 1343/DEL/2014.
Radhakrishnan, J. K. , Padaki, V. C. , Bhuvana, T. , and Kulkarni, G. U. , 2014, “ Needle Array Electrode', Indian Design Registration,” Indian Design Patent No: 260239.
Park, J. H. , and Prausnitz, M. R. , 2010, “ Analysis of the Mechanical Failure of Polymer Microneedles by Axial Force,” J. Korean Phys. Soc., 56(4), pp. 1223–1227. [CrossRef] [PubMed]
Shergold, O. A. , and Fleck, N. A. , 2005, “ Experimental Investigation Into the Deep Penetration of Soft Solids by Sharp and Blunt Punches, With Application to the Piercing of Skin',” ASME J. Biomed. Eng., 127(5), pp. 838–848. [CrossRef]
Henry, S. , McAllistor, D. V. , Allen, M. G. , and Prausnitz, M. R. , 1998, “ Microfabricated Microneedles: A Novel Approach to Transdermal Drug Delivery,” J. Pharm. Sci., 87, pp. 922–925. [CrossRef] [PubMed]
Monteiro-Riviere, N. A. , 2010, Toxicology of the Skin, CRC Press, Boca Raton, FL.
Radhakrishnan, J. K. , Padaki, V. C. , and Singh, U. K. , 2017, “ Mechanical Failure Analysis of Needles for Microneedle Array Dry-Electrodes,” Defence Life Sci. J., 2(4), pp. 448–452. [CrossRef]
Davis, S. P. , Landis, B. J. , Adams, Z. H. , Allen, M. G. , and Prausnitz, M. R. , 2004, “ Insertion of Microneedles Into Skin: Measurement and Prediction of Insertion Force and Needle Fracture Force,” J. Biomech., 37(8), pp. 1155–1163. [CrossRef] [PubMed]
Boonma, A. , Narayan, R. J. , and Lee, Y. S. , 2013, “ Analytical Modelling and Evaluation of Microneedles Apparatus With Deformable Tissues for Biomedical Applications,” Comput. Aided Des. Appl., 10(1), pp. 139–157. [CrossRef]
Geddes, L. A. , and Baker, L. E. , 1968, Principles of Applied Biomedical Instrumentation, Wiley, New York.
Franks, W. , Schenker, I. , Schmutz, P. , and Hierlemann, A. , 2005, “ Impedance Characterization and Modelling of Electrodes for Biomedical Applications,” IEEE Trans. Biomed. Eng., 52(7), pp. 1295–1302. [CrossRef] [PubMed]
Bergey, G. E. , Squires, R. D. , and Sipple, W. C. , 1971, “ Electrocardiogram Recording With Pasteless Electrodes,” IEEE Trans. Biomed. Eng., 18(3), pp. 206–211. [CrossRef]
Rosell, J. , Colominas, J. , Riu, P. , Pallas-Areny, R. , and Webster, J. G. , 1988, “ Skin Impedance From 1 Hz to,” IEEE Trans. Biomed. Eng., 35(8), pp. 649–651. [CrossRef] [PubMed]
Hokajärvi, I. A. , 2012, “ Electrode Contact Impedance and Biopotential Signal Quality,” M.S. thesis, Tampere University of Technology, Tampere, Finland.
Kaitainen, S. , Kutvonen, A. , Suvanto, M. , Pakkanen, T. T. , Lappalainen, R. , and Myllymaa, S. , 2014, “ Liquid Silicone Rubber (LSR)- Based Dry Bioelectrodes: The Effect of Surface Micropillar Structuring and Silver Coating on Contact Impedance,” Sens. Actuators A: Phys., 206, pp. 22–29. [CrossRef]
Zander, T. O. , Lehne, M. , Ihme, K. , Jatzev, S. , Correia, J. , Kothe, C. , Picht, B. , and Nijboer, F. , 2011, “ A Dry EEG-System for Scientific Research and Brain—Computer Interfaces,” Front. Neurosci., 5, pp. 1–10. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Photographs of microneedle array dry-electrode, with 10 × 10 array of SS microtips projecting out of a flat Teflon base. The needle array with Teflon base (a) over a stainless steel stub with a press-button type back contact and (b) over a polymer cup with SS base having a press-button type back contact.

Grahic Jump Location
Fig. 2

Optical micrograph of the acupuncture needle tip used for the needle array electrode fabrication (internal angle at the conical tip is 24 deg)

Grahic Jump Location
Fig. 3

Scanning electron micrograph of a part of the microneedle array dry electrode, showing the microneedles projecting out of the Teflon base

Grahic Jump Location
Fig. 4

Photographs of (a) an individual acupuncture needle and (b) the needle array electrode, mounted in the UTM

Grahic Jump Location
Fig. 5

The plot between critical load for failure versus length, for a SS needle of tapered geometry

Grahic Jump Location
Fig. 6

Displacement versus axial load curve, for a single needle applied against an aluminum block

Grahic Jump Location
Fig. 7

Optical images of a single needle applied against aluminum block in UTM: (a) pre and (b) post UTM measurement

Grahic Jump Location
Fig. 8

(a) Load versus displacement curve for a single needle applied against a Silicone elastomer block and (b) the single needle penetrating into the Silicone elastomer block, upon application of load in UTM

Grahic Jump Location
Fig. 9

Load versus displacement curve for the needle array electrode with 100 microtips, applied against a Silicone elastomer block

Grahic Jump Location
Fig. 10

Optical micrographs (5× magnification) of the Silicone elastomer surface, applied with needle array electrode containing 20 microtips. (a) sites of microtip penetration visible as dark punctured spots and (b) circular white impressions of the circular openings in the Teflon base.

Grahic Jump Location
Fig. 11

Typical (a) impedance and (b) phase characteristics of the needle array electrode



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In