0
Research Papers

Cardiac Magnetic Resonance Imaging of Mechanical Cavopulmonary Assistance

[+] Author and Article Information
Steven G. Chopski

School of Biomedical Engineering,
Science and Health Systems,
Bossone Research Enterprise Center,
Drexel University,
3141 Chestnut Street, Room 718,
Philadelphia, PA 19104
e-mail: Steven.Chopski@drexel.edu

Kevin Whitehead

Division of Cardiology and
Department of Radiology,
The Children's Hospital of Philadelphia,
3401 Civic Center Boulevard,
Philadelphia, PA 19104
e-mail: whiteheadk@email.chop.edu

George J. Englehardt

Division of Cardiology and
Department of Radiology,
The Children's Hospital of Philadelphia,
3401 Civic Center Boulevard,
Philadelphia, PA 19104
e-mail: englehardtg@email.chop.edu

Amy Throckmorton

School of Biomedical Engineering,
Science and Health Systems,
Bossone Research Enterprise Center,
Drexel University,
3141 Chestnut Street, Room 718,
Philadelphia, PA 19104
e-mail: amy.throckmorton@drexel.edu

1Corresponding author.

Manuscript received June 13, 2017; final manuscript received June 15, 2018; published online November 5, 2018. Assoc. Editor: Rosaire Mongrain.

J. Med. Devices 13(1), 011001 (Nov 05, 2018) (9 pages) Paper No: MED-17-1249; doi: 10.1115/1.4041414 History: Received June 13, 2017; Revised June 15, 2018

Mechanical circulatory support (MCS) options are limited for patients with dysfunctional single ventricle physiology. To address this unmet clinical need, we are developing an axial-flow blood pump to provide mechanical assistance to the cavopulmonary circulation. In this study, we investigate the use of high-resolution cardiac magnetic resonance imaging (MRI) to visualize the complex fluid flow conditions of mechanical circulatory assist in two patient-specific Fontan anatomies. A three-bladed axial-flow impeller coupled to a supportive cage with a four-bladed diffuser was positioned in the inferior vena cava (IVC) of each Fontan anatomy. Cardiac magnetic resonance (CMR) imaging and power efficiency studies were conducted at physiologic relevant parameters with cardiac outputs of 2, 3, and 4 L/min with impeller rotational speeds of 2000 and 4000 rpm. The axial-flow impeller was able to generate improved flow in the total cavopulmonary connection (TCPC). The higher rotational speed was able to redistribute flow in the TCPC anastomosis aiding in removing stagnant blood. No retrograde flow was observed or measured in the superior vena cava (SVC). As an extension of the CMR data, a scalar stress analysis was performed on both models and found a maximum scalar stress of approximately 42 Pa for both patient anatomies. The power efficiency experiments demonstrated a maximum energy gain of 8.6 mW for TCPC Anatomy 1 and 12.58 mW for TCPC Anatomy 2 for a flow rate of 4 L/min and at 4000 rpm. These findings support the continued development of axial blood pumps for mechanical cavopulmonary assist.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Mozaffarian, D. , Benjamin, E. J. , Go, A. S. , Arnett, D. K. , Blaha, M. J. , Cushman, M. , de Ferranti, S. , Despres, J. P. , Fullerton, H. J. , Howard, V. J. , Huffman, M. D. , Judd, S. E. , Kissela, B. M. , Lackland, D. T. , Lichtman, J. H. , Lisabeth, L. D. , Liu, S. , Mackey, R. H. , Matchar, D. B. , McGuire, D. K. , Mohler , E. R., 3rd. , Moy, C. S. , Muntner, P. , Mussolino, M. E. , Nasir, K. , Neumar, R. W. , Nichol, G. , Palaniappan, L. , Pandey, D. K. , Reeves, M. J. , Rodriguez, C. J. , Sorlie, P. D. , Stein, J. , Towfighi, A. , Turan, T. N. , Virani, S. S. , Willey, J. Z. , Woo, D. , Yeh, R. W. , and Turner, M. B. , 2015, “ Heart Disease and Stroke Statistics–2015 Update: A Report From the American Heart Association,” Circulation, 131(4), pp. e29–322. [PubMed]
Oster, M. E. , Kim, C. H. , Kusano, A. S. , Cragan, J. D. , Dressler, P. , Hales, A. R. , Mahle, W. T. , and Correa, A. , 2014, “ A Population-Based Study of the Association of Prenatal Diagnosis With Survival Rate for Infants With Congenital Heart Defects,” Am. J. Cardiol., 113(6), pp. 1036–1040. [CrossRef] [PubMed]
O'Leary, P. W. , 2002, “ Prevalence, Clinical Presentation and Natural History of Patients With Single Ventricle,” Prog. Pediatr. Cardiol., 16(1), pp. 31–38. [CrossRef]
Mondesert, B. , Marcotte, F. , Mongeon, F. P. , Dore, A. , Mercier, L. A. , Ibrahim, R. , Asgar, A. , Miro, J. , Poirier, N. , and Khairy, P. , 2013, “ Fontan Circulation: Success or Failure?,” Can. J. Cardiol., 29(7), pp. 811–820. [CrossRef] [PubMed]
Gewillig, M. , 2005, “ The Fontan Circulation,” Heart, 91(6), pp. 839–846. [CrossRef] [PubMed]
Kreutzer, C. , Kreutzer, J. , and Kreutzer, G. O. , 2013, “ Reflections on Five Decades of the Fontan Kreutzer Procedure,” Front. Pediatr., 1, p. 45. [CrossRef] [PubMed]
Khairy, P. , Poirier, N. , and Mercier, L. A. , 2007, “ Univentricular Heart,” Circulation, 115(6), pp. 800–812. [CrossRef] [PubMed]
Bove, E. L. , 1998, “ Current Status of Staged Reconstruction for Hypoplastic Left Heart Syndrome,” Pediatr. Cardiol., 19(4), pp. 308–315. [CrossRef] [PubMed]
d'Udekem, Y. , Iyengar, A. J. , Cochrane, A. D. , Grigg, L. E. , Ramsay, J. M. , Wheaton, G. R. , Penny, D. J. , and Brizard, C. P. , 2007, “ The Fontan Procedure: Contemporary Techniques Have Improved Long-Term Outcomes,” Circulation, 116(11_suppl), pp. I157–I164. [CrossRef] [PubMed]
Khairy, P. , Fernandes, S. M. , Mayer , J. E., Jr. , Triedman, J. K. , Walsh, E. P. , Lock, J. E. , and Landzberg, M. J. , 2008, “ Long-Term Survival, Modes of Death, and Predictors of Mortality in Patients With Fontan Surgery,” Circulation, 117(1), pp. 85–92. [CrossRef] [PubMed]
de Leval, M. R. , and Deanfield, J. E. , 2010, “ Four Decades of Fontan Palliation,” Nat. Rev. Cardiol., 7(9), pp. 520–527. [CrossRef] [PubMed]
VanderPluym, C. , Urschel, S. , and Buchholz, H. , 2013, “ Advanced Therapies for Congenital Heart Disease: Ventricular Assist Devices and Heart Transplantation,” Can. J. Cardiol., 29(7), pp. 796–802. [CrossRef] [PubMed]
Irving, C. , Parry, G. , O'Sullivan, J. , Dark, J. H. , Kirk, R. , Crossland, D. S. , Chaudhari, M. , Griselli, M. , Hamilton, J. R. , and Hasan, A. , 2010, “ Cardiac Transplantation in Adults With Congenital Heart Disease,” Heart, 96(15), pp. 1217–1222. [CrossRef] [PubMed]
Delmo-Walter, E. M. , and Hetzer, R. , 2013, “ Surgical Treatment Concepts for End-Stage Congenital Heart Diseases,” HSR Proc. Intensive Care Cardiovasc. Anesth., 5(2), pp. 81–84. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3722338/ [PubMed]
Weinstein, S. , Bello, R. , Pizarro, C. , Fynn-Thompson, F. , Kirklin, J. , Guleserian, K. , Woods, R. , Tjossem, C. , Kroslowitz, R. , Friedmann, P. , and Jaquiss, R. , 2014, “ The Use of the Berlin Heart EXCOR in Patients With Functional Single Ventricle,” J. Thorac. Cardiovasc. Surg., 147(2), pp. 697–704. [CrossRef] [PubMed]
Chopski, S. G. , Moskowitz, W. B. , Stevens, R. M. , and Throckmorton, A. L. , 2017, “ Mechanical Circulatory Support Devices for Pediatric Patients With Congenital Heart Disease,” Artif. Organs, 41(1), pp. E1–E14. [CrossRef] [PubMed]
de Leval, M. R. , 1998, “ The Fontan Circulation: What Have We Learned? What to Expect?,” Pediatr. Cardiol., 19(4), pp. 316–320. [CrossRef] [PubMed]
Chopski, S. G. , Rangus, O. M. , Downs, E. A. , Moskowitz, W. B. , and Throckmorton, A. L. , 2015, “ Three-Dimensional Laser Flow Measurements of a Patient-Specific Fontan Physiology With Mechanical Circulatory Assistance,” Artif. Organs, 39(6), pp. E67–E78. [CrossRef] [PubMed]
Markl, M. , Geiger, J. , Kilner, P. J. , Foll, D. , Stiller, B. , Beyersdorf, F. , Arnold, R. , and Frydrychowicz, A. , 2011, “ Time-Resolved Three-Dimensional Magnetic Resonance Velocity Mapping of Cardiovascular Flow Paths in Volunteers and Patients With Fontan Circulation,” Eur. J. Cardio-Thorac. Surg., 39(2), pp. 206–212. [CrossRef]
Be'eri, E. , Maier, S. E. , Landzberg, M. J. , Chung, T. , and Geva, T. , 1998, “ In Vivo Evaluation of Fontan Pathway Flow Dynamics by Multidimensional Phase-Velocity Magnetic Resonance Imaging,” Circulation, 98(25), pp. 2873–2882. [CrossRef] [PubMed]
Sharma, S. , Ensley, A. E. , Hopkins, K. , Chatzimavroudis, G. P. , Healy, T. M. , Tam, V. K. , Kanter, K. R. , and Yoganathan, A. P. , 2001, “ In Vivo Flow Dynamics of the Total Cavopulmonary Connection From Three-Dimensional Multislice Magnetic Resonance Imaging,” Ann. Thorac. Surg., 71(3), pp. 889–898. [CrossRef] [PubMed]
Sundareswaran, K. S. , Haggerty, C. M. , de Zelicourt, D. , Dasi, L. P. , Pekkan, K. , Frakes, D. H. , Powell, A. J. , Kanter, K. R. , Fogel, M. A. , and Yoganathan, A. P. , 2012, “ Visualization of Flow Structures in Fontan Patients Using 3-Dimensional Phase Contrast Magnetic Resonance Imaging,” J. Thorac. Cardiovasc. Surg., 143(5), pp. 1108–1116. [CrossRef] [PubMed]
Stankovic, Z. , Allen, B. D. , Garcia, J. , Jarvis, K. B. , and Markl, M. , 2014, “ 4D Flow Imaging With MRI,” Cardiovasc. Diagn. Ther., 4(2), pp. 173–192. [PubMed]
Throckmorton, A. L. , Downs, E. A. , Hazelwood, J. A. , Monroe, J. O. , and Chopski, S. G. , 2012, “ Twisted Cardiovascular Cages for Intravascular Axial Flow Blood Pumps to Support the Fontan Physiology,” Int. J. Artif. Organs, 35(5), pp. 369–375. [CrossRef] [PubMed]
Chopski, S. G. , Rangus, O. M. , Fox, C. S. , Moskowitz, W. B. , and Throckmorton, A. L. , 2015, “ Stereo-Particle Image Velocimetry Measurements of a Patient-Specific Fontan Physiology Utilizing Novel Pressure Augmentation Stents,” Artif. Organs, 39(3), pp. 228–236. [CrossRef] [PubMed]
Chopski, S. G. , Rangus, O. M. , Moskowitz, W. B. , and Throckmorton, A. L. , 2014, “ Experimental Measurements of Energy Augmentation for Mechanical Circulatory Assistance in a Patient-Specific Fontan Model,” Artif. Organs, 38(9), pp. 791–799. [PubMed]
Downs, E. A. , Moskowitz, W. B. , and Throckmorton, A. L. , 2012, “ Steady Flow Analysis of Mechanical Cavopulmonary Assistance in MRI-Derived Patient-Specific Fontan Configurations,” Artif. Organs, 36(11), pp. 972–980. [CrossRef] [PubMed]
Bludszuweit, C. , 1995, “ Three-Dimensional Numerical Prediction of Stress Loading of Blood Particles in a Centrifugal Pump,” Artif. Organs, 19(7), pp. 590–596. [CrossRef] [PubMed]
Brunette, J. , Mongrain, R. , Laurier, J. , Galaz, R. , and Tardif, J. C. , 2008, “ 3D Flow Study in a Mildly Stenotic Coronary Artery Phantom Using a Whole Volume PIV Method,” Med. Eng. Phys., 30(9), pp. 1193–1200. [CrossRef] [PubMed]
Katritsis, D. , Kaiktsis, L. , Chaniotis, A. , Pantos, J. , Efstathopoulos, E. P. , and Marmarelis, V. , 2007, “ Wall Shear Stress: Theoretical Considerations and Methods of Measurement,” Prog. Cardiovasc. Dis., 49(5), pp. 307–329. [CrossRef] [PubMed]
Efstathopoulos, E. P. , Patatoukas, G. , Pantos, I. , Benekos, O. , Katritsis, D. , and Kelekis, N. L. , 2008, “ Wall Shear Stress Calculation in Ascending Aorta Using Phase Contrast Magnetic Resonance Imaging. Investigating Effective Ways to Calculate It in Clinical Practice,” Phys. Medica, 24(4), pp. 175–181. [CrossRef]
Throckmorton, A. L. , Untaroiu, A. , Allaire, P. E. , Wood, H. G. , Lim, D. S. , McCulloch, M. A. , and Olsen, D. B. , 2007, “ Numerical Design and Experimental Hydraulic Testing of an Axial Flow Ventricular Assist Device for Infants and Children,” ASAIO J., 53(6), pp. 754–761. [CrossRef] [PubMed]
Ensley, A. E. , Lynch, P. , Chatzimavroudis, G. P. , Lucas, C. , Sharma, S. , and Yoganathan, A. P. , 1999, “ Toward Designing the Optimal Total Cavopulmonary Connection: An In Vitro Study,” Ann. Thorac. Surg., 68(4), pp. 1384–1390. [CrossRef] [PubMed]
De Rita, F. , Hasan, A. , Haynes, S. , Crossland, D. , Kirk, R. , Ferguson, L. , Peng, E. , and Griselli, M. , 2014, “ Mechanical Cardiac Support in Children With Congenital Heart Disease With Intention to Bridge to Heart Transplantation,” Eur. J. Cardiothorac. Surg., 46(4), pp. 656–662.
Kanani, M. , and Hsia, T. Y. , 2013, “ Options for the Failing Ventricle in Pediatric Heart Disease,” Curr. Cardiol. Rep., 15(10), p. 404. [CrossRef] [PubMed]
Ensley, A. E. , Ramuzat, A. , Healy, T. M. , Chatzimavroudis, G. P. , Lucas, C. , Sharma, S. , Pettigrew, R. , and Yoganathan, A. P. , 2000, “ Fluid Mechanic Assessment of the Total Cavopulmonary Connection Using Magnetic Resonance Phase Velocity Mapping and Digital Particle Image Velocimetry,” Ann. Biomed. Eng., 28(10), pp. 1172–1183. [CrossRef] [PubMed]
Kitajima, H. D. , Sundareswaran, K. S. , Teisseyre, T. Z. , Astary, G. W. , Parks, W. J. , Skrinjar, O. , Oshinski, J. N. , and Yoganathan, A. P. , 2008, “ Comparison of Particle Image Velocimetry and Phase Contrast MRI in a Patient-Specific Extracardiac Total Cavopulmonary Connection,” ASME J. Biomech. Eng., 130(4), p. 041004. [CrossRef]
KrishnankuttyRema, R. , Dasi, L. P. , Pekkan, K. , Sundareswaran, K. , Fogel, M. , Sharma, S. , Kanter, K. , Spray, T. , and Yoganathan, A. P. , 2008, “ Quantitative Analysis of Extracardiac Versus Intraatrial Fontan Anatomic Geometries,” Ann. Thorac. Surg., 85(3), pp. 810–817. [CrossRef] [PubMed]
Dasi, L. P. , Pekkan, K. , Katajima, H. D. , and Yoganathan, A. P. , 2008, “ Functional Analysis of Fontan Energy Dissipation,” J. Biomech., 41(10), pp. 2246–2252. [CrossRef] [PubMed]
Grigioni, M. , Amodeo, A. , Daniele, C. , D'avenio, G. , Formigari, R. , and Di Donato, R. M. , 2000, “ Particle Image Velocimetry Analysis of the Flow Field in the Total Cavopulmonary Connection,” Artif. Organs, 24(12), pp. 946–952. [CrossRef] [PubMed]
Figliola, R. , Giardini, A. , Conover, T. , Camp, T. , Biglino, G. , Chiulli, J. , and Hsia, T. , 2010, “ In Vitro Simulation and Validation of the Circulation With Congenital Heart Defects,” Prog. Pediatr. Cardiol., 30(1–2), pp. 71–80. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Fontan physiology. Single ventricle physiology; during single ventricle repair, the right side of the heart is bypassed with deoxygenated blood flowing from the body into the pulmonary arteries; the single ventricle becomes the left ventricle and pumps oxygenated blood to the body: SV—single ventricle, RPA—right pulmonary artery, LPA—left pulmonary artery, SVC—superior vena cava, IVC—inferior vena cava, TCPC—total cavopulmonary connection, and ECC—extra-cardiac connection.

Grahic Jump Location
Fig. 2

Magnetic resonance imaging compatible hydraulic testing system. (a) Physical system as viewed from the MRI control room; and (b) experimental testing system layout. Components are (a) model, (b) impeller prototype, (c) motor, and (d) flexible drive cable. Constant pressure head tanks: (e) superior vena cava, (f) inferior vena cava, (g) right pulmonary artery, (h) left pulmonary artery, (i) fluid reservoir, (j) MRI-compatible pump, (k) MRI machine, and (l) body coil. During MRI, the body coil covers the model and pump prototype for noise reduction: (c) rapid-prototype for TCPC Anatomy 1 and (d) rapid-prototype for TCPC Anatomy 2.

Grahic Jump Location
Fig. 3

Axial flow blood pump for Fontan patients. (a) Design consists of a catheter, four protective cage of filaments, impeller, and a four-bladed diffuser; (b) percutaneous placement of the blood pump in the IVC to support a Fontan patient; the device is designed to augment the incoming pressure and flow in IVC and thereby drive blood into pulmonary arteries (PAs) while supporting the incoming flow from the SVC; superior vena cava (SVC), left pulmonary artery (LPA), right pulmonary artery (RPA), and inferior vena cava (IVC).

Grahic Jump Location
Fig. 4

Velocity magnitude plots. Anatomy 1: (a) control case without pump present; (b) pump at stall; (c) pump operating at 2000 rpm; (d) pump operating at 4000 rpm; Anatomy 2: (e) control case without pump present; (f) pump at stall; (g) pump operating at 2000 rpm; and (h) pump operating at 4000 rpm; cardiac output of 2 L/min with 40%/60% SVC/IVC flow split and equal, mean pulmonary arterial pressures of 16 mmHg. Scale: mm.

Grahic Jump Location
Fig. 5

Velocity magnitude plots. Anatomy 1: (a) control case without pump present; (b) pump at stall; (c) pump operating at 2000 rpm; (d) pump operating at 4000 rpm; Anatomy 2: (e) control case without pump present; (f) pump at stall; (g) pump operating at 2000 rpm; and (h) pump operating at 4000 rpm; cardiac output of 3 L/min with 40%/60% SVC/IVC flow split and equal, mean pulmonary arterial pressures of 16 mmHg. Scale: mm.

Grahic Jump Location
Fig. 6

Scalar stress plots. Anatomy 1: (a) control case without pump present; (b) pump at stall; (c) pump operating at 2000 rpm; (d) pump operating at 4000 rpm; Anatomy 2: (e) control case without pump present; (f) pump at stall; (g) pump operating at 2000 rpm; and (h) pump operating at 4000 rpm; cardiac output of 3 L/min with 40%/60% SVC/IVC flow split and equal, mean pulmonary arterial pressures of 16 mmHg. Scale: mm. Note that the inset shows the impeller region of the flow field.

Grahic Jump Location
Fig. 7

Two-dimensional measured velocity profiles. (a) 2000 rpm and (b) 4000 rpm. A cardiac output of 2 L/min and an equal pulmonary arterial pressure of 16 mmHg were maintained. Slice locations inside of the TCPC model: (1) RPA, (2) LPA, (3) IVC, (4) SVC, and (5) TCPC junction.

Grahic Jump Location
Fig. 8

Power gain for cardiac outputs of 2, 3, and 4 L/min for equal pulmonary arterial pressures of 16 mmHg: (a) TCPC Anatomy 1 and (b) TCPC Anatomy 2

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In