0
Research Papers

Miniature Pump for Treatment of Refractory Ascites Based on Local Magnetic Actuation

[+] Author and Article Information
Nicolo Garbin

Department of Mechanical Engineering,
Vanderbilt University,
Nashville, TN 37212
e-mail: nicolo.garbin.1@vanderbilt.edu

Patrick Doyle

Medical Merge LLC,
Brentwood, TN 37027
e-mail: patrickdoyle1296@gmail.com

Byron Smith

Senior Engineer,
Medical Merge LLC,
Brentwood, TN 37027
e-mail: byron.f.smith@gmail.com

Jesse G. Taylor

Gastroenterologist,
Springfield, MO 65804
e-mail: gijesse@me.com

Mubashir H. Khan

Gastroenterologist,
Springfield, MO 65809
e-mail: mubhk76@gmail.com

Qasim Khalil

Hospital Medicine Consultant,
Abu Dhabi, 112412, United Arab Emirates
e-mail: qkhalil@gmail.com

Pietro Valdastri

Chair in Robotics & Autonomous Systems,
School of Electronic and Electrical Engineering,
University of Leeds,
Leeds, LS2 9JT, UK
e-mail: P.Valdastri@leeds.ac.uk

Manuscript received September 27, 2018; final manuscript received December 19, 2018; published online July 15, 2019. Assoc. Editor: Kunal Mitra.

J. Med. Devices 13(3), 031002 (Jul 15, 2019) (10 pages) Paper No: MED-18-1181; doi: 10.1115/1.4042460 History: Received September 27, 2018; Revised December 19, 2018

This paper presents the design, fabrication, and experimental validation of a novel low-cost implantable pump for the treatment of refractory ascites (RA) based on local magnetic actuation (LMA). A reciprocating positive displacement pump displaces liquid unidirectionally through magnetic coupling with a magnetic controller placed on the outside of the patient's body. The proposed solution is intuitive to use given an alignment algorithm that exploits externally placed magnetic field sensors (MFS). The implantable device has a catheter-like shape, is electronic free (no on-board battery), has low fabrication cost (<8 USD), and is able to generate a flow-rate of 3.65 L/h while effectively pumping fluids with various viscosity (1–5.5 cP). RA is commonly treated via costly paracentesis or invasive surgical placement of a transjugular portosystemic shunt (TIPS). The proposed solution can be implanted with minimally invasive techniques and can be used on a daily basis to drain a set amount of liquid, without requiring recurrent hospital visits.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Appenrodt, B. , 2011, “ Differential Diagnosis of Ascites,” Ascites, Hyponatremia Hepatorenal Syndrome: Progress in Treatment, Vol. 28, Karger AG, Basel, Switzerland, pp. 1–10.
Ginès, P. , Cárdenas, A. , Arroyo, V. , and Rodés, J. , 2004, “ Management of Cirrhosis and Ascites,” New Engl. J. Med., 350(16), pp. 1646–1654.
Davis, G. L. , Alter, M. J. , El-Serag, H. , Poynard, T. , and Jennings, L. W. , 2010, “ Aging of Hepatitis C Virus (HCV)-Infected Persons in the United States: A Multiple Cohort Model of HCV Prevalence and Disease Progression,” Gastroenterology, 138(2), pp. 513–521. [PubMed]
Habeeb, K. S. , and Herrera, J. L. , 1997, “ Management of Ascites: Paracentesis as a Guide,” Postgrad. Med., 101(1), pp. 191–200. [PubMed]
Ochs, A. , Rössle, M. , Haag, K. , Hauenstein, K.-H. , Deibert, P. , Siegerstetter, V. , Huonker, M. , Langer, M. , and Blum, H. E. , 1995, “ The Transjugular Intrahepatic Portosystemic Stent–Shunt Procedure for Refractory Ascites,” New Engl. J. Med., 332(18), pp. 1192–1197.
Sola-Vera, J. , Miñana, J. , Ricart, E. , Planella, M. , González, B. , Torras, X. , Rodríguez, J. , Such, J. , Pascual, S. , Soriano, G. , Pírez-Mateo, M., and Guarner, C., 2003, “ Randomized Trial Comparing Albumin and Saline in the Prevention of Paracentesis-Induced Circulatory Dysfunction in Cirrhotic Patients With Ascites,” Hepatology, 37(5), pp. 1147–1153. [PubMed]
Fagan, K. , Zhao, E. Y. , Horsfall, L. , Ruffin, B. J. , Kruger, M. S. , McPhail, S. , O'Rourke, P. , Ballard, E. , Irvine, K. , and Powell, E. , 2014, “ Burden of Decompensated Cirrhosis and Ascites on Hospital Services in a Tertiary Care Facility: Time for Change?,” Intern. Med. J., 44(9), pp. 865–872. [PubMed]
Somberg, K. A. , Riegler, J. L. , LaBerge, J. M. , Doherty-Simor, M. M. , Bachetti, P. , Roberts, J. P. , and Lake, J. R. , 1995, “ Hepatic Encephalopathy After Transjugular Intrahepatic Portosystemic Shunts: Incidence and Risk Factors,” Am. J. Gastroenterol., 90(4), pp. 549–555. [PubMed]
Aboelkassem, Y. , 2015, “ Insect-Inspired Micropump: Flow in a Tube With Local Contractions,” Micromachines, 6(8), pp. 1143–1156.
Aboelkassem, Y. , and Staples, A. E. , 2014, “ A Three-Dimensional Model for Flow Pumping in a Microchannel Inspired by Insect Respiration,” Acta Mech., 225(2), pp. 493–507.
Stirnimann, G. , Banz, V. , Storni, F. , and De Gottardi, A. , 2017, “ Automated Low-Flow Ascites Pump for the Treatment of Cirrhotic Patients With Refractory Ascites,” Ther. Adv. Gastroenterol., 10(2), pp. 283–292.
Stirnimann, G. , Berg, T. , Spahr, L. , Zeuzem, S. , McPherson, S. , Lammert, F. , Storni, F. , Banz, V. , Babatz, J. , Vargas, V. , Geier, A. , Stallmach, A. , Engelmann, C. , Treple, C. , Capel, J. , and De Gottardi, A. , 2017, “ Treatment of Refractory Ascites With an Automated Low-Flow Ascites Pump in Patients With Cirrhosis,” Alimentary Pharmacology Therapeutics, 46(10), pp. 981–991. [PubMed]
Di Natali, C. , Buzzi, J. , Garbin, N. , Beccani, M. , and Valdastri, P. , 2015, “ Closed-Loop Control of Local Magnetic Actuation for Robotic Surgical Instruments,” IEEE Trans. Rob., 31(1), pp. 143–156.
Ikuta, K. , Makita, S. , and Arimoto, S. , 1991, “ Non-Contact Magnetic Gear for Micro Transmission Mechanism,” IEEE Micro Electro Mechanical Systems, Nara, Japan, Dec. 30–Jan. 2, pp. 125–130.
Garbin, N. , Di Natali, C. , Buzzi, J. , De Momi, E. , and Valdastri, P. , 2015, “ Laparoscopic Tissue Retractor Based on Local Magnetic Actuation,” ASME J. Med. Devices, 9(1), p. 011005.
Garbin, N. , Slawinski, P. R. , Aiello, G. , Karraz, C. , and Valdastri, P. , 2016, “ Laparoscopic Camera Based on an Orthogonal Magnet Arrangement,” IEEE Rob. Autom. Lett., 1(2), pp. 924–929.
Tsimoyiannis, E. C. , Siakas, P. , Glantzounis, G. , Toli, C. , Sferopoulos, G. , Pappas, M. , and Manataki, A. , 2000, “ Laparoscopic Placement of the Tenckhoff Catheter for Peritoneal Dialysis,” Surg. Laparoscopy Endoscopy Percutaneous Tech., 10(4), pp. 218–221.
Nitti, V. W. , 2005, “ Pressure Flow Urodynamic Studies: The Gold Standard for Diagnosing Bladder Outlet Obstruction,” Rev. Urol., 7(Suppl. 6), p. S14. [PubMed]
Montague, R. G. , Bingham, C. , and Atallah, K. , 2013, “ Magnetic Gear Pole-Slip Prevention Using Explicit Model Predictive Control,” IEEE/ASME Trans. Mechatronics, 18(5), pp. 1535–1543.
Taddese, A. Z. , Slawinski, P. R. , Pirotta, M. , De Momi, E. , Obstein, K. L. , and Valdastri, P. , 2018, “ Enhanced Real-Time Pose Estimation for Closed-Loop Robotic Manipulation of Magnetically Actuated Capsule Endoscopes,” Int. J. Rob. Res., 37(8), pp. 890–911. [PubMed]
Scaglioni, B. , Fornarelli, N. , Garbin, N. , Menciassi, A. , and Valdastri, P. , 2018, “ Independent Control of Multiple Degrees of Freedom Local Magnetic Actuators With Magnetic Cross-Coupling Compensation,” IEEE Rob. Autom. Lett., 3(4), pp. 3622–3629.
Bellot, P. , Welker, M.-W. , Soriano, G. , von Schaewen, M. , Appenrodt, B. , Wiest, R. , Whittaker, S. , Tzonev, R. , Handshiev, S. , Verslype, C. , Moench, C. , Zeuzem, S. , Sauerbruch, T. , Guarner, C. , Schott, E. , Johnson, N. , Petrov, A. , Katxarov, K. , Nevens, F. , Zapater, P. , and Such, J. , 2013, “ Automated Low Flow Pump System for the Treatment of Refractory Ascites: A Multi-Center Safety and Efficacy Study,” J. Hepatol., 58(5), pp. 922–927. [PubMed]
Grabau, C. M. , Crago, S. F. , Hoff, L. K. , Simon, J. A. , Melton, C. A. , Ott, B. J. , and Kamath, P. S. , 2004, “ Performance Standards for Therapeutic Abdominal Paracentesis,” Hepatology, 40(2), pp. 484–488. [CrossRef] [PubMed]
Bernardi, M. , Caraceni, P. , Navickis, R. J. , and Wilkes, M. M. , 2012, “ Albumin Infusion in Patients Undergoing Large-Volume Paracentesis: A Meta-Analysis of Randomized Trials,” Hepatology, 55(4), pp. 1172–1181. [CrossRef] [PubMed]
Harding, V. , Fenu, E. , Medani, H. , Shaboodien, R. , Ngan, S. , Li, H. , Burt, R. , Diamantis, N. , Tuthill, M. , Blagden, S. , Gabra, H. , Urch, C. E. , Moser, S. , and Agarwal, R. , 2012, “ Safety, Cost-Effectiveness and Feasibility of Daycase Paracentesis in the Management of Malignant Ascites With a Focus on Ovarian Cancer,” Br. J. Cancer, 107(6), p. 925. [CrossRef] [PubMed]
Thomas, M. , Sauter, G. , Gerbes, A. , Stangl, M. , Schiergens, T. , Angele, M. , Werner, J. , and Guba, M. , 2015, “ Automated Low Flow Pump System for the Treatment of Refractory Ascites: A Single-Center Experience,” Langenbeck's Arch. Surg., 400(8), pp. 979–983. [CrossRef]
Ginès, P. , Uriz, J. , Calahorra, B. , Garcia-Tsao, G. , Kamath, P. S. , Del Arbol, L. R. , Planas, R. , Bosch, J. , Arroyo, V. , and Rodés, J. , 2002, “ Transjugular Intrahepatic Portosystemic Shunting Versus Paracentesis Plus Albumin for Refractory Ascites in Cirrhosis,” Gastroenterology, 123(6), pp. 1839–1847. [CrossRef] [PubMed]
Bohn, K. A. , and Ray, C. E., Jr. , 2015, “ Repeat Large-Volume Paracentesis Versus Tunneled Peritoneal Catheter Placement for Malignant Ascites: A Cost-Minimization Study,” Am. J. Roentgenol., 205(5), pp. 1126–1134. [CrossRef]
Huber, C. , Abert, C. , Bruckner, F. , Groenefeld, M. , Muthsam, O. , Schuschnigg, S. , Sirak, K. , Thanhoffer, R. , Teliban, I. , Vogler, C. , Windl, R. , and Suess, D. , 2016, “ 3D Print of Polymer Bonded Rare-Earth Magnets, and 3D Magnetic Field Scanning With an End-User 3D Printer,” Appl. Phys. Lett., 109(16), p. 162401. [CrossRef]
Jacimovic, J. , Binda, F. , Herrmann, L. G. , Greuter, F. , Genta, J. , Calvo, M. , Tomse, T. , and Simon, R. A. , 2016, “ Net Shape 3D Printed NdFeB Permanent Magnet,” preprint .
Gokturk, H. S. , Demir, M. , Ozturk, N. A. , Unler, G. K. , Kulaksizoglu, S. , Kozanoglu, I. , Serin, E. , and Yilmaz, U. , 2010, “ The Role of Ascitic Fluid Viscosity in the Differential Diagnosis of Ascites,” Can. J. Gastroenterol. Hepatol., 24(4), pp. 255–259.
Zahn, E. A. , 1938, “ Viscosity Cup,” U.S. Patent No. .

Figures

Grahic Jump Location
Fig. 1

Schematic representation of the LMA-based pump. The LMA pump collects ascitic liquid from the abdominal cavity and delivers it to the bladder for expulsion via urination.

Grahic Jump Location
Fig. 2

(a) Schematic representation of the principle of operation of the LMA-based pump and (b) cross-sectional view of EDM and IDM to show their magnetization vectors (mD and md) and angular displacements (θD and θd)

Grahic Jump Location
Fig. 3

Contour plot of TMAX for varying h and l. The black thick line identifies the stall torque (5.42 m N·m) for a commercially available DC micro motor comparable in size to the IDM.

Grahic Jump Location
Fig. 4

(a) Assembled CIP next to a quarter dollar, (b) CIPc before assembly, and (c) assembled pumping element

Grahic Jump Location
Fig. 5

(a) Exploded view of the MEC and (b) fabricated MEC, front and top view

Grahic Jump Location
Fig. 6

Pumping control scheme based on θ˙D feedback measured from the DC motor encoder. The torque experienced by the DC motor (τD), along with the angular velocity θ˙D, and with the control parameter (ΔV) can be used for prediction of pole slippage–malfunctioning.

Grahic Jump Location
Fig. 7

Schematic cross-sectional view of the EDM ŷẑ plane. MFS position and shielding is shown.

Grahic Jump Location
Fig. 8

(a) Experimental setup used to validate algorithm for IDM/EDM alignment and (b) schematic representation of the area of interest used for IDM/EDM alignment testing

Grahic Jump Location
Fig. 12

Top: Recorder flow rate when pumping 40 ml of water; middle: recorded flow rate when pumping 40 ml of mixed water and antifreeze concentrate; bottom: cyclic pumping profiles (mean ± standard deviation) of the top and middle plot

Grahic Jump Location
Fig. 11

Experimental bench test used to validate and quantify pumping efficacy

Grahic Jump Location
Fig. 10

Left: Custom functions f(MFS1, MFS2); right: optimal alignment colormaps which are used to inform the user when proper alignment is established

Grahic Jump Location
Fig. 9

Regression curves of sensors (MFS1 and MFS2) readings with and without shielding while the IDM scanned the defined area of interest. Coefficient of determination R2 value is shown in each plot.

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In