0
Research Papers

A Proof-of-Concept Demonstration for a Novel Soft Ventricular Assist Device

[+] Author and Article Information
Saleh H. Gharaie

Dalio Institute of Cardiovascular Imaging,
Department of Radiology,
New York-Presbyterian Hospital and
Weill Cornell Medicine,
413 E.69th street, Suite 108,
New York, NY 10021
e-mail: s.gharaie@deakin.edu.au

Amir Ali Amir Moghadam

Dalio Institute of Cardiovascular Imaging,
Department of Radiology,
New York-Presbyterian Hospital and
Weill Cornell Medicine,
413 E.69th street, Suite 108,
New York, NY 10021
e-mail: ama2041@med.cornell.edu

Subhi J. Al'Aref

Dalio Institute of Cardiovascular Imaging,
Department of Radiology,
New York-Presbyterian Hospital and
Weill Cornell Medicine,
413 E.69th street, Suite 108,
New York, NY 10021
e-mail: sua9028@med.cornell.edu

Alexandre Caprio

Dalio Institute of Cardiovascular Imaging,
Department of Radiology,
New York-Presbyterian Hospital and
Weill Cornell Medicine,
413 E.69th street, Suite 108,
New York, NY 10021
e-mail: alex.caprio1@gmail.com

Seyedhamidreza Alaie

Dalio Institute of Cardiovascular Imaging,
Department of Radiology,
New York-Presbyterian Hospital and
Weill Cornell Medicine,
413 E.69th street, Suite 108,
New York, NY 10021
e-mail: sea2012@med.cornell.edu

Mohamed Zgaren

Dalio Institute of Cardiovascular Imaging,
Department of Radiology,
New York-Presbyterian Hospital and
Weill Cornell Medicine,
413 E.69th street, Suite 108,
New York, NY 10021
e-mail: zgaren@gmail.com

James K. Min

Dalio Institute of Cardiovascular Imaging,
Department of Radiology,
New York-Presbyterian Hospital and
Weill Cornell Medicine,
413 E.69th street, Suite 108,
New York, NY 10021
e-mail: jkm2001@med.cornell.edu

Simon Dunham

Dalio Institute of Cardiovascular Imaging,
Department of Radiology,
New York-Presbyterian Hospital and
Weill Cornell Medicine,
413 E.69th street, Suite 108,
New York, NY 10021
e-mail: sid2012@med.cornell.edu

Bobak Mosadegh

Dalio Institute of Cardiovascular Imaging,
Department of Radiology,
New York-Presbyterian Hospital and
Weill Cornell Medicine,
413 E.69th street, Suite 108,
New York, NY 10021
e-mail: bom2008@med.cornell.edu

1Corresponding author.

Manuscript received July 31, 2018; final manuscript received January 21, 2019; published online April 16, 2019. Assoc. Editor: Prasanna Hariharan.

J. Med. Devices 13(2), 021009 (Apr 16, 2019) (10 pages) Paper No: MED-18-1121; doi: 10.1115/1.4043052 History: Received July 31, 2018; Revised January 21, 2019

Patients treated by current ventricular assist devices (VADs) suffer from various post implantation complications including gastrointestinal bleeding and arteriovenous malformation. These issues are related to intrinsically mismatch of generated flow by VADs and the physiological flow. In addition, the common primary drawback of available VADs is excessive surgical dissection during implantation, which limits these devices to less morbid patients. We investigated an alternative soft VAD (SVAD) system that generates physiological flow, and designed to be implanted using minimally invasive surgery by leveraging soft materials. A soft VAD (which is an application of intraventricular balloon pump) is developed by utilizing a polyurethane balloon, which generates pulsatile flow by displacing volume within the left ventricle during its inflation and deflation phases. Our results show that the SVAD system generates an average ejection fraction of 50.18 ± 1.52% (n = 6 ± SD) in explanted porcine hearts. Since the SVAD is implanted via the apex of the heart, only a minithoracotomy should be required for implantation. Our results suggest that the SVAD system has the performance characteristics that could potentially make it useful for patients in acute and/or chronic heart failure, thus serving as a bridge-to-transplantation or bridge-to-recovery.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Roger, V. L. , 2013, “ Epidemiology of Heart Failure,” Circ. Res., 113(6), pp. 646–659. [CrossRef] [PubMed]
Agunanne, E. , Abbas, A. , and Mukherjee, D. , 2016, “ Abstract 163: High Burden of Valvulopathy in Heart Failure: A Moving Target,” Circ. Cardiovasc. Qual. Outcomes, 9(Suppl 2), pp. A163–A163. https://www.ahajournals.org/doi/10.1161/circoutcomes.9.suppl_2.163
Potapov, E. V. , Krabatsch, T. , Ventura, H. O. , and Hetzer, R. , 2011, “ Advances in Mechanical Circulatory Support: Year in Review,” J. Heart Lung Transplant., 30(5), p. 487–493. [CrossRef] [PubMed]
Frazier, O. , Rose, E. A. , Macmanus, Q. , Burton, N. A. , Lefrak, E. A. , Poirier, V. L. , and Dasse, K. A. , 1992, “ Multicenter Clinical Evaluation of the HeartMate 1000 IP Left Ventricular Assist Device,” Ann. Thorac. Surg., 53(6), pp. 1080–1090. [CrossRef] [PubMed]
Cheng, A. , Williamitis, C. A. , and Slaughter, M. S. , 2014, “ Comparison of Continuous-Flow and Pulsatile-Flow Left Ventricular Assist Devices: Is There an Advantage to Pulsatility?,” Ann. Cardiothoracic Surg., 3(6), pp. 573–581.
Bozkurt, S. , 2016, “ Physiologic Outcome of Varying Speed Rotary Blood Pump Support Algorithms: A Review Study,” Australas. Phys. Eng. Sci. Med., 39(1), pp. 13–28. [CrossRef] [PubMed]
Grooters, R. K. , 1992, “ External Cardiac Assist Device,” U.S. Patent No. US5131905A.
Snyders, R. V. , 1987, “ Ventricular Assist Device,” U.S. Patent No. US4690134A.
Roche, E. T. , Horvath, M. A. , Wamala, I. , Alazmani, A. , Song, S.-E. , Whyte, W. , Machaidze, Z. , Payne, C. J. , Weaver, J. C. , Fishbein, G. , Kuebler, J. , Vasilyev, N. V. , Mooney, D. J. , Pigula, F. A. , and Walsh, C. J. , 2017, “ Soft Robotic Sleeve Supports Heart Function,” Sci. Transl. Med., 9(373), p. eaaf3925.
Parissis, H. , Graham, V. , Lampridis, S. , Lau, M. , Hooks, G. , and Mhandu, P. C. , 2016, “ IABP: History-Evolution-Pathophysiology-Indications: What we Need to Know,” J. Cardiothoracic Surg., 11, p. 122. [CrossRef]
Zhang, J.-M. , Liu, X.-C. , Liu, Z.-G. , Zhao, L. , Yang, L. , Liu, T.-W. , and He, G.-W. , 2015, “ Comparison of Effects of Extra-Thoracic Paraaortic Counterpulsation to Intraaortic Balloon Pump on Circulatory Support in Acute Heart Failure,” J. Cardiothoracic Surg., 10, p. 173. [CrossRef]
Stamatelopoulos, S. F. , Kochilas, L. , Saridakis, N. S. , Zakopoulos, N. A. , and Moulopoulos, S. D. , 1996, “ Left Intraventricular Balloon Pump Optimization During Intractable Cardiac Arrest,” Int. J. Artif. Organs, 19(7), pp. 422–430. https://www.ncbi.nlm.nih.gov/pubmed/8841857 [PubMed]
Torchiana, D. F. , Hirsch, G. , Buckley, M. J. , Hahn, C. , Allyn, J. W. , Akins, C. W. , Drake, J. F. , Newell, J. B. , and Austen, W. G. , 1997, “ Intraaortic Balloon Pumping for Cardiac Support: Trends in Practice and Outcome, 1968 to 1995,” J. Thorac. Cardiovasc. Surg., 113(4), pp. 758–764. https://www.ncbi.nlm.nih.gov/pubmed/9104986 [PubMed]
Satava , R. M., Jr. , and McGoon, D. C. , 1974, “ Cardiac Assist With an Intraventricular Balloon,” J. Thorac. Cardiovasc. Surg., 67(5), pp. 780–787. https://www.ncbi.nlm.nih.gov/pubmed/4823312 [PubMed]
Curtis, J. J. , McGoon, D. C. , and Kaye, M. P. , 1977, “ Cardiac Assist With an Intraventricular Balloon: Hemodynamic Observations With a Clinical Prototype,” Surg. Forum, 28, pp. 290–291. https://www.ncbi.nlm.nih.gov/pubmed/617450 [PubMed]
Stamatelopoulos, S. , Zakopoulos, N. , Saridakis, N. , Kanakakis, J. , Stefanou, S. , Gougoulakis, A. , and Moulopoulos, S. , 1995, “ Optimal Conditions of Biventricular Balloon Pumping During Ventricular Fibrillation in the Experimental Animal,” Assisted Circulation, Vol. 4, F. Unger , ed., Springer, Berlin, pp. 42–51.
Kawel-Boehm, N. , Maceira, A. , Valsangiacomo-Buechel, E. R. , Vogel-Claussen, J. , Turkbey, E. B. , Williams, R. , Plein, S. , Tee, M. , Eng, J. , and Bluemke, D. A. , 2015, “ Normal Values for Cardiovascular Magnetic Resonance in Adults and Children,” J. Cardiovasc. Magn. Reson., 17(1), p. 29. [CrossRef] [PubMed]
Grayburn, P. A. , Carabello, B. , Hung, J. , Gillam, L. D. , Liang, D. , Mack, M. J. , McCarthy, P. M. , Miller, D. C. , Trento, A. , and Siegel, R. J. , 2014, “ Defining ‘Severe’ Secondary Mitral Regurgitation,” Emphasizing Integr. Approach, 64(25), pp. 2792–2801. https://www.ncbi.nlm.nih.gov/pubmed/25541133
Shepard, R. B. , Simpson, D. C. , and Sharp, J. F. , 1966, “ Energy Equivalent Pressure,” Arch. Surg., 93(5), pp. 730–740. [CrossRef] [PubMed]
Stergiopulos, N. , Meister, J. J. , and Westerhof, N. , 1994, “ Simple and Accurate Way for Estimating Total and Segmental Arterial Compliance: The Pulse Pressure Method,” Ann. Biomed. Eng., 22(4), pp. 392–397. [CrossRef] [PubMed]
Nobili, M. , Morbiducci, U. , Ponzini, R. , Del Gaudio, C. , Balducci, A. , Grigioni, M. , Maria Montevecchi, F. , and Redaelli, A. , 2008, “ Numerical Simulation of the Dynamics of a Bileaflet Prosthetic Heart Valve Using a Fluid–Structure Interaction Approach,” J. Biomech., 41(11), pp. 2539–2550. [CrossRef] [PubMed]
Braunwald, E. , Brockenbrough, F. C. J. , E. C. , Frahm, C. J. , and Ross, J., Jr. , 1961, “ Left Atrial and Left Ventricular Pressures in Subjects Without Cardiovascular Disease: Observations Eighteen Patients Studied by Transseptal Left Heart Catheterization,” Circulation, 24(2), pp. 267–269. [CrossRef] [PubMed]
Hildebrand, D. K. , Wu, Z. J. , Mayer , J. E., Jr. , and Sacks, M. S. , 2004, “ Design and Hydrodynamic Evaluation of a Novel Pulsatile Bioreactor for Biologically Active Heart Valves,” Ann. Biomed. Eng., 32(8), pp. 1039–1049. [CrossRef] [PubMed]
Harvey, L. , Holley, C. T. , and John, R. , 2014, “ Gastrointestinal Bleed After Left Ventricular Assist Device Implantation: Incidence, Management, and Prevention,” Ann. Cardiothorac. Surg., 3(5), pp. 475–479. https://www.ncbi.nlm.nih.gov/pubmed/25452907 [PubMed]
Ündar, A. , 2004, “ Myths and Truths of Pulsatile and Nonpulsatile Perfusion During Acute and Chronic Cardiac Support,” Artif. Organs, 28(5), pp. 439–443. https://www.ncbi.nlm.nih.gov/pubmed/15113337 [PubMed]
Undar, A. , Zapanta, C. M. , Reibson, J. D. , Souba, M. , Lukic, B. , Weiss, W. J. , Snyder, A. J. , Kunselman, A. R. , Pierce, W. S. , Rosenberg, G. , and Myers, J. L. , 2005, “ Precise Quantification of Pressure Flow Waveforms of a Pulsatile Ventricular Assist Device,” ASAIO J., 51(1), pp. 56–59. https://www.ncbi.nlm.nih.gov/pubmed/15745135 [PubMed]
Ündar, A. , Eichstaedt, H. C. , Masai, T. , Yang, S.-Q. , Bigley, J. E. , McGarry, M. C. , Mueller, M. , Vaughn, W. K. , and Fraser, C. D. , 2001, “ Comparison of Six Pediatric Cardiopulmonary Bypass Pumps During Pulsatile and Nonpulsatile Perfusion,” J. Thorac. Cardiovasc. Surg., 122(4), pp. 827–829. [CrossRef] [PubMed]
Travis, A. R. , Giridharan, G. A. , Pantalos, G. M. , Dowling, R. D. , Prabhu, S. D. , Slaughter, M. S. , Sobieski, M. , Undar, A. , Farrar, D. J. , and Koenig, S. C. , 2007, “ Vascular Pulsatility in Patients With a Pulsatile- or Continuous-Flow Ventricular Assist Device,” J. Thorac. Cardiovasc. Surg., 133(2), pp. 517–524. [CrossRef] [PubMed]
Chen, C.-H. , Nevo, E. , Fetics, B. , Pak, P. H. , Yin, F. C. P. , Maughan, W. L. , and Kass, D. A. , 1997, “ Estimation of Central Aortic Pressure Waveform by Mathematical Transformation of Radial Tonometry Pressure,” Validation Generalized Transfer Funct., 95(7), pp. 1827–1836. https://www.ahajournals.org/doi/full/10.1161/01.CIR.95.7.1827
Cole, G. D. , Dhutia, N. M. , Shun-Shin, M. J. , Willson, K. , Harrison, J. , Raphael, C. E. , Zolgharni, M. , Mayet, J. , and Francis, D. P. , 2015, “ Defining the Real-World Reproducibility of Visual Grading of Left Ventricular Function and Visual Estimation of Left Ventricular Ejection Fraction: Impact of Image Quality, Experience and Accreditation,” Int. J. Cardiovasc. Imaging, 31(7), pp. 1303–1314. [CrossRef] [PubMed]
Clay, S. , Alfakih, K. , Radjenovic, A. , Jones, T. , Ridgway, J. P. , and Sinvananthan, M. U. , 2006, “ Normal Range of Human Left Ventricular Volumes and Mass Using Steady State Free Precession MRI in the Radial Long Axis Orientation,” Magma, 19(1), pp. 41–45. [CrossRef] [PubMed]
Fried, J. A. , Nair, A. , Takeda, K. , Clerkin, K. , Topkara, V. K. , Masoumi, A. , Yuzefpolskaya, M. , Takayama, H. , Naka, Y. , Burkhoff, D. , Kirtane, A. , Karmpaliotis, D. , Moses, J. , Colombo, P. C. , and Garan, A. R. , 2018, “ Clinical and Hemodynamic Effects of Intra-Aortic Balloon Pump Therapy in Chronic Heart Failure Patients With Cardiogenic Shock,” J. Heart Lung Transplant., 37(11), pp. 1313–1321. [CrossRef] [PubMed]
Erdogan, H. B. , Goksedef, D. , Erentug, V. , Polat, A. , Bozbuga, N. , Mansuroglu, D. , Guler, M. , Akinci, E. , and Yakut, C. , 2006, “ In Which Patients Should Sheathless IABP Be Used? An Analysis of Vascular Complications in 1211 Cases,” J. Card. Surg., 21(4), pp. 342–346. [CrossRef] [PubMed]
Roy, S. K. , Howard, E. W. , Panza, J. A. , and Cooper, H. A. , 2010, “ Clinical Implications of Thrombocytopenia Among Patients Undergoing Intra-Aortic Balloon Pump Counterpulsation in the Coronary Care Unit,” Clin. Cardiol., 33(1), pp. 30–35. [CrossRef] [PubMed]
Trost, J. C. , and Hillis, L. D. , 2006, “ Intra-Aortic Balloon Counterpulsation,” Am. J. Cardiol., 97(9), pp. 1391–1398. [CrossRef] [PubMed]
Cloud, G. C. , Rajkumar, C. , Kooner, J. , Cooke, J. , and Bulpitt, C. J. , 2003, “ Estimation of Central Aortic Pressure by SphygmoCor® Requires Intra-Arterial Peripheral Pressures,” Clin. Sci., 105(2), pp. 219–225. [CrossRef] [PubMed]
DeVore, A. D. , Mentz, R. J. , and Patel, C. B. , 2014, “ Medical Management of Patients With Continuous-Flow Left Ventricular Assist Devices,” Curr. Treat. Options Cardiovasc. Med., 16(2), pp. 283–283. [CrossRef] [PubMed]
Ji, B. , and Ündar, A. , 2007, “ Review Article: Comparison of Perfusion Modes on Microcirculation During Acute and Chronic Cardiac Support: Is There a Difference?,” Perfusion, 22(2), pp. 115–119. https://journals.sagepub.com/doi/abs/10.1177/0267659107080115 [PubMed]
Soucy, K. G. , Giridharan, G. A. , Choi, Y. , Sobieski, M. A. , Monreal, G. , Cheng, A. , Schumer, E. , Slaughter, M. S. , and Koenig, S. C. , 2015, “ Rotary Pump Speed Modulation for Generating Pulsatile Flow and Phasic Left Ventricular Volume Unloading in a Bovine Model of Chronic Ischemic Heart Failure,” J. Heart Lung Transplant., 34(1), pp. 122–131. [CrossRef] [PubMed]
Shiose, A. , Nowak, K. , Horvath, D. J. , Massiello, A. L. , Golding, L. A. R. , and Fukamachi, K. , 2010, “ Speed Modulation of the Continuous-Flow Total Artificial Heart to Simulate a Physiologic Arterial Pressure Waveform,” ASAIO J., 56(5), pp. 403–409. [CrossRef] [PubMed]
Ising, M. , Warren, S. , Sobieski, M. A. , Slaughter, M. S. , Koenig, S. C. , and Giridharan, G. A. , 2011, “ Flow Modulation Algorithms for Continuous Flow Left Ventricular Assist Devices to Increase Vascular Pulsatility: A Computer Simulation Study,” Cardiovasc. Eng. Technol., 2(2), p. 90. [CrossRef]
Deo, S. V. , Sharma, V. , Cho, Y. H. , Shah, I. K. , and Park, S. J. , 2014, “ De Novo Aortic Insufficiency During Long-Term Support on a Left Ventricular Assist Device: A Systematic Review and Meta-Analysis,” ASAIO J., 60(2), pp. 183–188. [CrossRef] [PubMed]
Jezovnik, M. K. , Gregoric, D. I. , and Poredos, P. , 2017, “ Medical Complications in Patients With LVAD Devices,” E-J. Cardiol. Pract., 14(37), epub.
Gharaie, S. H. , Mosadegh, B. , and Morsi, Y. , 2017, “ Towards Computational Prediction of Flow-Induced Damage of Blood Cells Using a Time-Accumulated Model,” J. Biomech. Sci. Eng., 12(4), p. 17. https://www.jstage.jst.go.jp/article/jbse/advpub/0/advpub_17-00168/_article/-char/en
Fraser, K. H. , Zhang, T. , Taskin, M. E. , Griffith, B. P. , and Wu, Z. J. , 2012, “ A Quantitative Comparison of Mechanical Blood Damage Parameters in Rotary Ventricular Assist Devices: Shear Stress, Exposure Time and Hemolysis Index,” ASME J. Biomech. Eng., 134(8), p. 081002. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematic view of the SVAD system: AV, aortic valve; DB, deflated balloon; DL, drive line; IB, inflated balloon; LA, left atrium; LV, left ventricle; MV, mitral valve; RA, right atrium; RV, right ventricle

Grahic Jump Location
Fig. 2

Balloon selection. Image of the solidified Ecoflex 0030 polymer and selected polyurethane balloon from vention medical. Solidified polymer has a volume of 28 mL. The polyurethane balloon is shown in its noninflated state (atmospheric pressure): a = 69 mm, b = 35 mm, c = 36 mm, d = 36 mm.

Grahic Jump Location
Fig. 3

Three-dimensional printed human heart model. Image of a 3D printed model of the left side of a human heart with congenital heart disease having a dilated left ventricle (LV) of ∼300 ml: (1) pneumatic drive line for SVAD balloon, (2) flow outlet, and (3) flow inlet.

Grahic Jump Location
Fig. 4

Schematic representation of the pneumatic system components: (1) pressure line, (2) pressure regulator (SMC pneumatics—SMC ITV1031-21N2BL4), (3) Solenoid valve (Parker—SOLENOID COIL 24 VDC 11.2W NEW—BB06-051-380C), (4) drive line (internal diameter: 2.67mm), (5) polyurethane balloon (Vention MedicalXX), (6) solenoid valve (Parker–SOLENOID COIL 24 VDC 11.2 W NEW—BB06-051-380C), and (7) vacuum line

Grahic Jump Location
Fig. 5

The flow loop system. Schematic view (a) and experimental setup (b) of the flow loop connected to an explanted porcine heart: (1) outflow connector, (2) pressure sensors (transducers direct—TDH30 pressure transducer), (3) flow meter (Sonotec—SonoflowCo.55/120), (4) resistor (RuB—pneumatic drawn brass ball valve—S34 ½ CW617N 15, (5) compliance chamber, (6) pressure regulator (SMC pneumatics—SMC ITV1031-21N2BL4), (7) high pressure supply, (8) solenoid valve (parker—SOLENOID COIL 24 VDC 11.2W NEW—BB06-051-380C), (9) reservoir, 10) silicon tubing (1/4 in. diameter), (11) pressure sensor (transducers direct—TDH30 pressure transducer), and (12) inflow connector.

Grahic Jump Location
Fig. 6

Ejection fraction of explanted heart. Calculated EFs (n = 6, mean ± SD) for systolic time of 30% to 45% and systolic pressure ranges 4 psi–12 psi.

Grahic Jump Location
Fig. 7

Stroke volume in 3D printed heart. Calculated SVs of SVAD in the 3D printed model for systolic times between 30% and 45% and systolic pressures between 4 psi and 12 psi.

Grahic Jump Location
Fig. 8

Real-time measurements of SVAD performance with 45% systolic time (60 beats/min) and 12 psi inflation pressure. Graphs of the instantaneous measurement of the flow and pressure waveform for an explanted porcine heart with a 33 mL LV volume.

Grahic Jump Location
Fig. 9

Echocardiography images. Images of a porcine heart with an implanted SVAD at peak systole (a) and end diastole (b).

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In