0
Research Papers

Measurement of Frictional Properties of Aortic Stent Grafts and Their Delivery Systems

[+] Author and Article Information
Tianhao Chen

Division of Engineering Science,
University of Toronto,
35 Street George Street,
Toronto, ON M5S 1A4, Canada
e-mail: tianhao.chen@mail.utoronto.ca

Michael Lancaster

Department of Mechanical and
Industrial Engineering,
University of Toronto,
5 King's College Road,
Toronto, ON M5S 3G8, Canada
e-mail: mlancaster@mail.utoronto.ca

Dawn S. Y. Lin

Department of Mechanical and
Industrial Engineering,
University of Toronto,
5 King's College Road,
Toronto, ON M5S 3G8, Canada
e-mail: dawn.lin@mail.utoronto.ca

Matthew G. Doyle

Department of Mechanical and
Industrial Engineering,
University of Toronto,
5 King's College Road,
Toronto, ON M5S 3G8, Canada;
Division of Vascular Surgery,
Peter Munk Cardiac Centre,
University Health Network,
University of Toronto,
200 Elizabeth Street, Eaton North 6-222,
Toronto, ON M5G 2C4, Canada
e-mail: mg.doyle@utoronto.ca

Thomas L. Forbes

Division of Vascular Surgery,
Peter Munk Cardiac Centre,
University Health Network,
University of Toronto,
200 Elizabeth Street, Eaton North 6-222,
Toronto, ON M5G 2C4, Canada
e-mail: thomas.forbes@uhn.ca

Cristina H. Amon

Department of Mechanical and
Industrial Engineering,
University of Toronto,
5 King's College Road,
Toronto, ON M5S 3G8, Canada;
Institute of Biomaterials and
Biomedical Engineering,
University of Toronto,
Rosebrugh Building,
164 College Street,
Toronto, ON M5S3G9, Canada
e-mail: cristina.amon@utoronto.ca

1Corresponding author.

Manuscript received October 22, 2018; final manuscript received March 11, 2019; published online April 11, 2019. Assoc. Editor: Prasanna Hariharan.

J. Med. Devices 13(2), 021008 (Apr 11, 2019) (9 pages) Paper No: MED-18-1192; doi: 10.1115/1.4043292 History: Received October 22, 2018; Revised March 11, 2019

Stent grafts are medical devices used to treat abdominal aortic aneurysms (AAAs) in endovascular aneurysm repair (EVAR). Computational and experimental models have been developed to study stent graft delivery and deployment during EVAR; however, frictional properties have not been taken into account in most previous studies. The objective of this study was to determine the coefficients of friction of three commercially available stent grafts (Cook Zenith, Medtronic Endurant, and Vascutek Anaconda), their delivery sheaths, a porcine aorta, and two mock arterial materials. Stent grafts were obtained and separated into stents, graft fabric, and sheaths. Using a custom-made friction measurement apparatus, the coefficients of friction were measured between five material pairs: (i) the stents and inner surface of the sheath, (ii) the graft fabric and inner surface of the sheath, (iii) the outer surface of the sheath and a porcine aorta, (iv) the outer surface of the sheath and three different polyvinyl alcohol (PVA) cryogels, and (v) the outer surface of the sheath and a polydimethylsiloxane (PDMS) sheet. The results show that the coefficients of friction between the graft fabric and the sheath were higher than those between the stents and the sheath. The PVA cryogels showed more comparable frictional properties to the porcine aorta than did the PDMS sheet, suggesting that PVA cryogels provide a more accurate approximation for the in vivo frictional properties. These results can be used to improve the accuracy of computational models for stent graft delivery and deployment and to select appropriate materials for vascular phantoms.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Sakalihasan, N. , Limet, R. , and Defawe, O. D. , 2005, “ Abdominal Aortic Aneurysm,” Lancet, 365(9470), pp. 1577–1589. [CrossRef] [PubMed]
Segalova, P. A. , Xiong, G. , Rao, K. T. , Zarins, C. K. , and Taylor, C. A. , 2011, “ Evaluating Design of Abdominal Aortic Aneurysm Endografts in a Patient-Specific Model Using Computational Fluid Dynamics,” ASME J. Med. Devices, 5(2), p. 027505. [CrossRef]
Pereles, B. D. , and Ong, K. G. , 2008, “ A Wireless, Passive Sensor for Monitoring the Pressure of an Abdominal Aortic Aneurysm Sac,” ASME J. Med. Devices, 2(2), p. 027557. [CrossRef]
Rylski, B. , Czerny, M. , Südkamp, M. , Russe, M. , Siepe, M. , and Beyersdorf, F. , 2015, “ Fenestrated and Branched Aortic Grafts: Patency, Perioperative Mortality and Spinal Ischemia,” Dtsch. Äerztebl. Int., 112(48), pp. 816–822.
Crawford, S. A. , Sanford, R. M. , Doyle, M. G. , Wheatcroft, M. , Amon, C. H. , and Forbes, T. L. , 2018, “ Prediction of Advanced Endovascular Stent Graft Rotation and Its Associated Morbidity and Mortality,” J. Vasc. Surg., 68(2), pp. 348–355. [CrossRef] [PubMed]
Sanford, R. M. , Crawford, S. A. , Genis, H. , Doyle, M. G. , Forbes, T. L. , and Amon, C. H. , 2018, “ Predicting Rotation in Fenestrated Endovascular Aneurysm Repair Using Finite Element Analysis,” ASME J. Biomech. Eng., 140(9), p. 091004. [CrossRef]
Kleinstreuer, C. , Li, Z. , Basciano, C. A. , Seelecke, S. , and Farber, M. A. , 2008, “ Computational Mechanics of Nitinol Stent Grafts,” ASME J. Biomech. Eng., 41(11), pp. 2370–2378. [CrossRef]
Demanget, N. , Duprey, A. , Badel, P. , Orgéas, L. , Avril, S. , Geindreau, C. , Albertini, J. N. , and Favre, J. P. , 2013, “ Finite Element Analysis of the Mechanical Performances of 8 Marketed Aortic Stent-Grafts,” J. Endovasc. Ther., 20(4), pp. 523–535. [CrossRef] [PubMed]
Demanget, N. , Avril, S. , Badel, P. , Orgéas, L. , Geindreau, C. , Albertini, J. N. , and Favre, J. P. , 2012, “ Computational Comparison of the Bending Behavior of Aortic Stent-Grafts,” J. Mech. Behav. Biomed. Mater., 5(1), pp. 272–282. [CrossRef] [PubMed]
Saraswat, P. , Chinnakonda, M. , and Baillargeon, B. , 2016, “ Living Heart Human Model: Cardiovascular Stent Deployment and Cardiac Cycle Simulation,” ASME J. Med. Devices, 10(3), p. 030945. [CrossRef]
Suess, T. N. , Gent, S. P. , Remund, T. , and Kelly, P. , 2015, “ Analysis of Stent-Graft Design for Aortic Aneurysm Repair Using Computational Fluid Dynamics,” ASME J. Med. Devices, 9(3), p. 030943. [CrossRef]
Shek, T. L. , Tse, L. W. , Nabovati, A. , and Amon, C. H. , 2012, “ Computational Fluid Dynamics Evaluation of the Cross-Limb Stent Graft Configuration for Endovascular Aneurysm Repair,” ASME J. Biomech. Eng., 134(12), p. 121002. [CrossRef]
Sun, Q. , Groth, A. , Bertram, M. , Waechter, I. , Bruijns, T. , Hermans, R. , and Aach, T. , 2010, “ Phantom-Based Experimental Validation of Computational Fluid Dynamics Simulations on Cerebral Aneurysms,” Med. Phys., 37(9), pp. 5054–5065. [CrossRef] [PubMed]
Cloonan, A. J. , Shahmirzadi, D. , Li, R. X. , Doyle, B. J. , Konofagou, E. E. , and McGloughlin, T. M. , 2014, “ 3D-Printed Tissue-Mimicking Phantoms for Medical Imaging and Computational Validation Applications,” 3D Print. Addit. Manuf., 1(1), pp. 14–23. [CrossRef] [PubMed]
Corbett, T. J. , Doyle, B. J. , Callanan, A. , Walsh, M. T. , and McGloughlin, T. M. , 2010, “ Engineering Silicone Rubbers for In Vivo Studies: Creating AAA Models and ILT Analogues With Physiological Properties,” AMSE J. Biomech. Eng., 132(1), p. 011008. [CrossRef]
Doyle, B. J. , Morris, L. G. , Callanan, A. , Kelly, P. , Vorp, D. A. , and McGloughlin, T. M. , 2008, “ 3D Reconstruction and Manufacture of Real Abdominal Aortic Aneurysms: From CT Scan to Silicone Model,” ASME J. Biomech. Eng., 130(3), p. 034501. [CrossRef]
Couture, T. , and Szewczyk, J. , 2017, “ Design and Experimental Validation of an Active Catheter for Endovascular Navigation,” ASME J. Med. Devices, 12(1), p. 011003. [CrossRef]
Raptis, A. , Xenos, M. , Georgakarakos, E. , Kouvelos, G. , Giannoukas, A. , and Matsagkas, M. , 2017, “ Hemodynamic Profile of Two Aortic Endografts Accounting for Their Postimplantation Position,” ASME J. Med. Devices, 11(2), p. 021003. [CrossRef]
He, Z. , Mongrain, R. , Chayer, B. , Cloutier, G. , and Soulez, G. , 2018, “ Tissue-Mimicking Mockup for Abdominal Aortic Aneurysm—Effect of Surrounding Tissue,” Eighth World Congress of Biomechanics, Dublin, Ireland, July 8–12, p. P4631.
Wu, W. , Qi, M. , Liu, X. P. , Yang, D. Z. , and Wang, W. Q. , 2007, “ Delivery and Release of Nitinol Stent in Carotid Artery and Their Interactions: A Finite Element Analysis,” ASME J. Biomech. Eng., 40(13), pp. 3034–3040. [CrossRef]
Petrini, L. , Migliavacca, F. , Massarotti, P. , Schievano, S. , Dubini, G. , and Auricchio, F. , 2005, “ Computational Studies of Shape Memory Alloy Behavior in Biomedical Applications,” ASME J. Biomech. Eng., 127(4), pp. 716–725. [CrossRef]
Chen, Y. M. , Kurokawa, T. , Tominaga, T. , Yasuda, K. , Osada, Y. , Gong, J. P. , Yamamoto, K. , and Ando, J. , 2010, “ Study on the Sliding Friction of Endothelial Cells Cultured on Hydrogel and the Role of Glycocalyx on Friction Reduction,” Adv. Eng. Mater., 12(11), pp. B628–B636. [CrossRef]
De Bock, S. , Iannaccone, F. , De Santis, G. , De Beule, M. , Loo, D. V. , Devos, D. , Vermassen, F. , Segers, P. , and Verhegghe, B. , 2012, “ Virtual Evaluation of Stent Graft Deployment: A Validated Modeling and Simulation Study,” J. Mech. Behav. Biomed. Mater., 13, pp. 129–139. [CrossRef] [PubMed]
Vad, S. , Eskinazi, A. , Corbett, T. , McGloughlin, T. , and Geest, J. P. V. , 2010, “ Determination of Coefficient of Friction for Self-Expanding Stent-Grafts,” ASME J. Biomech. Eng., 132(12), p. 121007. [CrossRef]
King, D. M. , Moran, C. M. , McNamara, J. D. , Fagan, A. J. , and Browne, J. E. , 2011, “ Development of a Vessel-Mimicking Material for Use in Anatomically Realistic Doppler Flow Phantoms,” Ultrasound Med. Biol., 37(5), pp. 813–826. [CrossRef] [PubMed]
Crawford, S. A. , Doyle, M. G. , Amon, C. H. , and Forbes, T. L. , 2018, “ The Influence of Surgical Technique on Device Rotation and Fenestration Alignment in Advanced Endovascular Aneurysm Repair,” J. Vasc. Surg., 68(3), p. e71.
Doyle, G. , M., Lancaster , M., Tse , L. W., Forbes , T. L. , and Amon, C. H. , 2016, “ Measurement of Aortic Stent Graft Coefficients of Friction,” Summer Biomechanics Bioengineering and Biotransport Conference, National Harbor, MD, June 29–July 2, p. SB3C2016-60.
Naduvinamani, N. B. , and Savitramma, G. K. , 2013, “ Squeeze Film Lubrication Between Rough Poroelastic Rectangular Plates With Micropolar Fluid: A Special Reference to the Study of Synovial Joint Lubrication,” ISRN Tribol., 2013, p. 431508. [CrossRef]
Niemczyk, A. , Fray, M. E. , and Franklin, S. E. , 2015, “ Friction Behaviour of Hydrophilic Lubricious Coatings for Medical Device Applications,” Tribol. Int., 89, pp. 54–61. [CrossRef]
Ohta, M. , Handa, A. , Iwata, H. , Rufenacht, D. A. , and Tsutsumi, S. , 2004, “ Poly-Vinyl Alcohol Hydrogel Vascular Models for In Vivo Aneurysm Simulations: The Key to Low Friction Surfaces,” Technol. Health Care, 12(3), pp. 225–233. https://content.iospress.com/articles/technology-and-health-care/thc00335 [PubMed]
Hassan, C. M. , and Peppas, N. A. , 2000, “ Structure and Applications of Poly(Vinyl Alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods,” Biopolymers PVA Hydrogels, Anionic Polymerisation Nanocomposites (Advance in Polymer Science), Vol. 153, Springer, Berlin.
Weaver, J. D. , and Ku, D. N. , 2010, “ Mechanical Evaluation of Polyvinyl Alcohol Cryogels for Covered Stents,” ASME J. Med. Devices, 4(3), p. 031002. [CrossRef]
Owen, M. J. , 2001, “Elastomers: Siloxane,” Encyclopedia of Materials: Science and Technology, Elsevier, New York, pp. 2480–2482.
Kazmierska, K. , Szwast, M. , and Ciach, T. , 2008, “ Determination of Urethral Catheter Surface Lubricity,” J. Mate. Sci. Mater. Med., 19(6), pp. 2301–2306. [CrossRef]
LaPorte, R. J. , 1997, Hydrophilic Polymer Coatings for Medical Devices (Structure/Properties, Development, Manufacture and Applications), CRC Press, New York, pp. 157–163.
Braun, O. M. , and Peyrard, M. , 2011, “ Dependence of Kinetic Friction on Velocity: Master Equation Approach,” Phys. Rev. E: Stat. Nonlinear Soft Matter Phys., 83(4 Pt. 2), p. 046129. [CrossRef]
Mamada, K. , Fridrici, V. , Kosukegawa, H. , Kapsa, P. , and Ohta, M. , 2011, “ Friction Properties of Poly(Vinyl Alcohol) Hydrogel: Effects of Degree of Polymerization and Saponification Value,” Tribol. Lett., 42(2), pp. 241–251. [CrossRef]
Mamada, K. , Kosukegawa, H. , Fridrici, V. , Kapsa, P. , and Ohta, M. , 2011, “ Friction Properties of PVA-H/Steel Ball Contact Under Water Lubrication Conditions,” Trib. Int., 44(7–8), pp. 757–763. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Cook Zenith TFFB-32-82-ZT stent graft body (a) and corresponding freely expanded stents for each section (b)

Grahic Jump Location
Fig. 2

Medtronic Endurant ENBF3516C170EE stent graft body(a) and corresponding freely expanded stents for each section(b)

Grahic Jump Location
Fig. 3

Vascutek Anaconda CD220 stent graft body

Grahic Jump Location
Fig. 4

Schematic of experimental apparatus for measurement of friction forces between two materials consisting of motor (1), motor driver (2), nylon monofilament (3), load cell (4), pulley (5), and test block (6)

Grahic Jump Location
Fig. 5

Test block for testing friction between inner surface of sheath and stents/graft fabric (a) and test block for testing friction between outer surface of sheath and porcine aorta/PVA cryogels/PDMS sheet (b)

Grahic Jump Location
Fig. 6

Representative graph generated from FUTEK load cell for frictional force between sheath and porcine aorta for the Anaconda stent graft

Grahic Jump Location
Fig. 7

Coefficients of friction for stent-sheath and graft-sheath material pairs of Zenith (a), Endurant (b), and Anaconda (c) stent grafts

Grahic Jump Location
Fig. 8

Pictures of graft fabric for the Zenith (a), Endurant (b), and Anaconda (c) stent grafts oriented such that the axial direction is horizontal

Grahic Jump Location
Fig. 9

Comparison between coefficients of friction between the outer surface of sheath and the porcine aorta, the PVA cryogels, and the PDMS sheet for Zenith (a), Endurant (b), and Anaconda (c) stent grafts

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In