Newest Issue

Research Papers

J. Med. Devices. 2017;12(1):011001-011001-7. doi:10.1115/1.4038221.

Right ventricular (RV) dysfunction has limited the effectiveness of mechanical circulatory support (MCS) therapy in some heart failure (HF) patients. Intravascular pumps can provide adequate circulatory support without the need for extensive operations. The development of an intravascular right ventricular assist device (RVAD), called the cavo-arterial pump (CAP), is presented. Two prototypes of the CAP were developed to demonstrate the feasibility of providing adequate pulmonary support and to demonstrate the feasibility of using axial magnetic couplings for contactless torque transmission from the motor shaft to the pump impeller. The CAP utilizing a direct drive mechanism produced a maximum pressure of 100 mm Hg and a maximum flow of 2.25 L/min when operated at 24 kRPM. When a magnetic drive mechanism was used, the overall flowrate decreased due to a loss in torque transmission. The magnetic drive CAP was able to operate up to 18.5 kRPM and produce a maximum flowrate of 1.35 L/min and a maximum pressure difference of 40 mm Hg. These results demonstrate that the CAP produces sufficient output for partial circulatory support of the pulmonary circulation, and that axial magnetic couplings can help to eliminate the sealing system needed to isolate the miniature motor and bearings from blood contact.

Commentary by Dr. Valentin Fuster
J. Med. Devices. 2017;12(1):011002-011002-7. doi:10.1115/1.4038222.

This paper presents the design of a mechanically driven artificial speech device to be used by laryngectomees as an affordable alternative to an electrolarynx (EL). Design objectives were based on feedback from potential end users. The device implements a mainspring powered gear train that drives a striker. The striker impacts a suspended drum-like head, producing sound. When pressed against the neck, the head transmits sound into the oral cavity, allowing the user to produce intelligible speech. The dynamics of the vibrating head and sound pressure levels (SPLs) produced at the mouth were measured to compare performance between the device and a common, commercially available EL. The results showed comparable performance and sound output.

Commentary by Dr. Valentin Fuster
J. Med. Devices. 2017;12(1):011003-011003-12. doi:10.1115/1.4038334.

Endovascular techniques have many advantages but rely strongly on operator skills and experience. Robotically steerable catheters have been developed but few are clinically available. We describe here the development of an active and efficient catheter based on shape memory alloys (SMA) actuators. We first established the specifications of our device considering anatomical constraints. We then present a new method for building active SMA-based catheters. The proposed method relies on the use of a core body made of three parallel metallic beams and integrates wire-shaped SMA actuators. The complete device is encapsulated into a standard 6F catheter for safety purposes. A trial-and-error campaign comparing 70 different prototypes was conducted to determine the best dimensions of the core structure and of the SMA actuators with respect to the imposed specifications. The final prototype was tested on a silicon-based arterial model and on a 23 kg pig. During these experiments, we were able to cannulate the supra-aortic trunks and the renal arteries with different angulations and without any complication. A second major contribution of this paper is the derivation of a reliable mathematical model for predicting the bending angle of our active catheters. We first use this model to state some general qualitative rules useful for an iterative dimensional optimization. We then perform a quantitative comparison between the actual and the predicted bending angles for a set of 13 different prototypes. The relative error is less than 20% for bending angles between 100 deg and 150 deg, which is the interval of interest for our applications.

Commentary by Dr. Valentin Fuster
J. Med. Devices. 2017;12(1):011004-011004-6. doi:10.1115/1.4038307.

This study evaluated the biomechanical efficacy of single-tunnel double-bundle anterior cruciate ligament (ACL) reconstruction technique. The graft construct is achieved using a novel fixation device that splits an ACL (SPACL) graft into two bundles, recreating the anteromedial (AM) and posterolateral (PL) bundles for ACL reconstruction. A pullout strength test of the SPACL was performed using a 7-mm bovine digital extensor tendon graft. The capability in restoration of knee kinematics after SPACL reconstruction was investigated using cadaveric human knees on a robotic testing system under an anterior tibial load of 134 N and a simulated quadriceps load of 400 N. The data indicated that the SPACL graft has a pullout strength of 823.7±172.3 N. Under the 134 N anterior tibial load, the anteroposterior joint laxity had increased constraint using the SPACL reconstruction but not significantly (p > 0.05) at all selected flexion angles. Under the 400 N quadriceps load, no significant differences were observed between the anterior tibial translation of intact knee and SPACL conditions at all selected flexion angles, but the SPACL graft induced a significant increase in external tibial rotation compared to the intact knee condition at all selected flexion angles with a maximal external rotation of −3.20 deg ±3.6 deg at 90 deg flexion. These data showed that the SPACL technique is equivalent or superior to existing ACL reconstruction techniques in restoration of knee laxity and kinematics. The new SPACL reconstruction technique could provide a valuable alternation to contemporary ACL reconstruction surgery by more closely recreating native ACL kinematics.

Commentary by Dr. Valentin Fuster
J. Med. Devices. 2017;12(1):011005-011005-6. doi:10.1115/1.4038335.

This paper reports the design, development, and initial evaluation of a robotic laparoscopic clipping tool for single manipulator wound closure and anastomosis (tubular reconnection). The tool deploys biodegradable clips and clasps with the goal of (i) integrating grasping and suturing into a single device for single hand or manipulator use, (ii) applying the equivalent of interrupted sutures without the need of managing suture thread, and (iii) allowing for full six degrees-of-freedom (DOFs) laparoscopic control when mounted on a robot arm. The specifications, workflow, and detailed design of the robotic laparoscopic tool and injection molded bio-absorbable T shaped clip and locking clasp are reported. The clipping tool integrates forceps to grab and stabilize tissue and a clip and clasp applier to approximate and fixate the tissue. A curved needle is advanced on a circular needle path and picks up and drags clips through tissue. The clip is then tightened through the tissue and a clasp is clamped around the clip, before the clip is released from the needle. Results of several bench test runs of the tool show: (a) repeatable circular needle drive, (b) successful pick-up and deployment of clips, (c) successful shear of the clip to release the clip from the needle, and (d) closure of clasp on clip with an average of 2.0 N holding force. These data indicate that the robotic laparoscopic clipping tool could be used for laparoscopic wound closure and anastomosis.

Commentary by Dr. Valentin Fuster
J. Med. Devices. 2017;12(1):011006-011006-7. doi:10.1115/1.4038308.

The multiphotodiode array (MPA) is a novel transmission photoplethysmography (PPG) sensor to measure pulse wave velocity (PWV) in the finger. To validate the MPA, a setup was built to generate a red laser dot traveling over the MPA with known and constant scanning velocities. These scanning velocities were chosen to include speeds at least twice as high as those found in the normal range of PWV in healthy populations and were set at 12.9, 25.8, 36, or 46.7 m/s. The aim of this study was to verify the functionality of the MPA: performing local noninvasive PWV measurements. To illustrate the applicability of the MPA in clinical practice, an in vivo pilot study was conducted using the flow-mediated dilation (FMD) technique. The in vitro accuracy of the MPA was ±0.2%, 0.3%, 0.5%, and 0.6% at the applied scanning velocities. The MPA can measure PWVs with a maximum deviation of 3.0%. The in vivo pilot study showed a PWV before the FMD of 1.1±0.2 m/s. These results suggest that this novel MPA can reliably and accurately measure PWV within clinically relevant ranges and even well beyond.

Commentary by Dr. Valentin Fuster
J. Med. Devices. 2018;12(1):011007-011007-15. doi:10.1115/1.4038561.

In current bipolar electrosurgical instruments, a high frequency electrical sinusoidal wave is passed through the patient's body from an active electrode to the return electrode to cut, coagulate, or desiccate tissues. Even though current bipolar electrosurgical instruments have proven effective in minimizing blood loss, advancement is needed to allow for improved dexterity and adaptability. With current advances in three-dimensional (3D)-print processes and its integration in the medical field, it has become possible to manufacture patient-and operation-specific instruments. In this study, we introduce the first 3D-printed steerable bipolar grasper (◻ 5 mm) for use in minimal invasive surgery. The grasper significantly improves dexterity by the addition of two planar joints allowing for ±65 deg for sideways and ±85 deg for up- and downward movement. The joints enable a significantly higher bending stiffness, 4.0 N/mm for joint 1 and 4.4 N/mm for joint 2, than that of currently available steerable instruments. The tip consists of two metallic movable jaws that can be opened and closed with angles up to 170 deg and allows for grasping and coagulating of tissues; reaching tissue temperatures of over 75 °C for an activation time of ∼5 s, respectively. In order to actuate the joint, tip, and electrosurgical system, as well as to tension the steering cables, a ring handle was designed. In summary, the 3D-printed steerable bipolar grasper provides the surgeon with electrosurgical capabilities, improved dexterity, improved stiffness, and the versatility that is needed to provide patient- and operation-specific care.

Commentary by Dr. Valentin Fuster
J. Med. Devices. 2018;12(1):011008-011008-7. doi:10.1115/1.4038498.

Retransfusion of a patient's own shed blood during cardiac surgery is attractive since it reduces the need for allogeneic transfusion, minimizes cost, and decreases transfusion related morbidity. Evidence suggests that lipid micro-emboli associated with the retransfusion of the shed blood are the predominant causes of the neurocognitive disorders. We have developed a novel acoustophoretic filtration system that can remove lipids from blood at clinically relevant flow rates. Unlike other acoustophoretic separation systems, this ultrasound technology works at the macroscale, and is therefore able to process larger flow rates than typical micro-electromechanical system (MEMS) scale acoustophoretic separation devices. In this work, we have first demonstrated the systematic design of the acoustic device and its optimization, followed by examining the feasibility of the device to filter lipids from the system. Then, we demonstrate the effects of the acoustic waves on the shed blood; examining hemolysis using both haptoglobin formation and lactate dehydrogenase release, as well as the potential of platelet aggregation or inflammatory cascade activation. Finally, in a porcine surgical model, we determined the potential viability of acoustic trapping as a blood filtration technology, as the animal responded to redelivered blood by increasing both systemic and mean arterial blood pressure.

Commentary by Dr. Valentin Fuster
J. Med. Devices. 2018;12(1):011009-011009-12. doi:10.1115/1.4038898.

The shelf life of point-of-care and rapid diagnostic tests (POC-RDTs) is commonly compromised by abrupt temperature changes during storage, transportation, and use. This situation is especially relevant in tropical regions and resource-constrained settings where cold chain may be unreliable. Here, we report the use of novel and low-cost passive thermal shield (TS) made from laminated phase change material (PCM) to reduce thermal overload in POC-RDTs. Validation of the proposed design was done through numerical simulation and testing of an octadecane shield prototype in contact with a lateral flow immunoassay. The use of our TS design provided 30–45 min delay in thermal equilibration under constant and oscillating heat load challenges resembling those of field use. The addition of a thin PCM protection layer to POC-RDTs can be a cost-effective, scalable, and reliable solution to provide additional thermal stability to these devices.

Commentary by Dr. Valentin Fuster
J. Med. Devices. 2018;12(1):011010-011010-5. doi:10.1115/1.4039011.

An understanding of the time-varying mechanical impedance of the ankle during walking is fundamental in the design of active ankle-foot prostheses and lower extremity rehabilitation devices. This paper describes the estimation of the time-varying mechanical impedance of the human ankle in both dorsiflexion–plantarflexion (DP) and inversion–eversion (IE) during walking in a straight line. The impedance was estimated using a two degrees-of-freedom (DOF) vibrating platform and instrumented walkway. The perturbations were applied at eight different axes of rotation combining different amounts of DP and IE rotations of four male subjects. The observed stiffness and damping were low at heel strike, increased during the mid-stance, and decreases at push-off. At heel strike, it was observed that both the damping and stiffness were larger in IE than in DP. The maximum average ankle stiffness was 5.43 N·m/rad/kg at 31% of the stance length (SL) when combining plantarflexion and inversion and the minimum average was 1.14 N·m/rad/kg at 7% of the SL when combining dorsiflexion and eversion. The maximum average ankle damping was 0.080 Nms/rad/kg at 38% of the SL when combining plantarflexion and inversion, and the minimum average was 0.016 Nms/rad/kg at 7% of the SL when combining plantarflexion and eversion. From 23% to 93% of the SL, the largest ankle stiffness and damping occurred during the combination of plantarflexion and inversion or dorsiflexion and eversion. These rotations are the resulting motion of the ankle's subtalar joint, suggesting that the role of this joint and the muscles involved in the ankle rotation are significant in the impedance modulation in both DP and IE during gait.

Commentary by Dr. Valentin Fuster
J. Med. Devices. 2018;12(1):011011-011011-10. doi:10.1115/1.4039010.

The paper presents the development of a new device for measuring continuous pulse pressure waveforms (PPW) from the radial artery via applanation tonometry. The development focuses on improved accuracy, open and affordable design using off-the-shelf components, and greater user control in setting operational and calibration parameters to address user variability. The device design parameters are optimized through a tissue device interaction study based on a computational model. The design incorporates modular components and includes a sensor module for arterial flattening and pressure pick-up, a differential screw mechanism and a related algorithm for controlled stepwise motion and data collection during flattening, and a brace for wrist-flexion adjustment. Maximum pulse amplitude (PA) was used as an indicator of the optimum level of arterial flattening for recording the PPW. The PPW was observed to distort due to changes in parameters like gel-head placement, hold-down pressure (HDP), and wrist extension. The pressure waveforms collected using the device were validated using limited data against established products and showed good correlation within ±1.96 standard deviation of the mean difference in a Bland–Altman plot. This paper thus details the development of a simple and validated mechanical design to measure PPW using arterial tonometry.

Commentary by Dr. Valentin Fuster
J. Med. Devices. 2018;12(1):011012-011012-8. doi:10.1115/1.4038810.

We present personal aid for mobility and monitoring (PAMM II), an instrumented walker for Parkinson's disease (PD) patients' gait monitoring. The objective of the walker is to aid in the diagnosis and monitoring of PD progression as well as the effects of clinical treatment and rehabilitation. In contrast to existing devices, the walker is a low-cost solution that is simple to operate and maintain, requiring no adjustments, special usage instructions, or infrastructure. This preliminary study reports on the efficiency, reliability, and accuracy of PAMM II when used to evaluate 22 PD patients and 20 control individuals. All subjects walked two prescribed paths while pushing the walker, and their kinematic motion signals were automatically collected by the walker. Feature derivation from the walker's signals was followed by combinations of two classical feature selection methods and two learning algorithms, with the objective of discriminating PD patients from control subjects. Sensitivity and specificity scores of 91% and 95% were achieved for the first walking protocol, whereas discrimination over the second walking protocol produced sensitivity and specificity scores of 96% and 100%. These preliminary results provide insight as to the usefulness of PAMM II and its data processing algorithms for the assessment of PD patients' condition.

Commentary by Dr. Valentin Fuster

Technical Brief

J. Med. Devices. 2017;12(1):014501-014501-5. doi:10.1115/1.4038562.

Accurate force simulation is essential to haptic simulators for surgical training. Factors such as tissue inhomogeneity pose unique challenges for simulating needle forces. To aid in the development of haptic needle insertion simulators, a handheld force sensing syringe was created to measure the motion and forces of needle insertions. Five needle insertions were performed into the neck of a cadaver using the force sensing syringe. Based on these measurements a piecewise exponential needle force characterization, was implemented into a haptic central venous catheterization (CVC) simulator. The haptic simulator was evaluated through a survey of expert surgeons, fellows, and residents. The maximum needle insertion forces measured ranged from 2.02 N to 1.20 N. With this information, four characterizations were created representing average, muscular, obese, and thin patients. The median survey results showed that users statistically agreed that “the robotic system made me sensitive to how patient anatomy impacts the force required to advance needles in the human body.” The force sensing syringe captured force and position information. The information gained from this syringe was able to be implemented into a haptic simulator for CVC insertions, showing its utility. Survey results showed that experts, fellows, and residents had an overall positive outlook on the haptic simulator's ability to teach haptic skills.

Topics: Haptics , Robotics , needles
Commentary by Dr. Valentin Fuster
Commentary by Dr. Valentin Fuster

Design Innovation Paper

J. Med. Devices. 2017;12(1):015001-015001-5. doi:10.1115/1.4038439.

Unloader knee braces are prescribed for patients with unicompartmental osteoarthritis of the knee. These braces aim to reduce pain in patients by applying a coronal moment to the knee to unload the symptomatic knee compartment. However, existing unloading mechanisms use straps that go directly behind the knee joint, to apply the needed moment. This can impinge on the popliteal artery and peroneal nerves thereby causing discomfort to the patient. Hence, these braces cannot be worn for prolonged periods of time. This research focused on developing a new knee brace to improve comfort while unloading the osteoarthritic knee. A new knee brace was developed that uses a four-point bending approach to unload the knee. In this brace, unloading can be adjusted, and the unloading mechanism is away from the joint. The new brace was tested on a cadaver specimen to quantify its capability to unload the knee compartment. The brace was also worn by a patient with osteoarthritis who subjectively compared it to his existing unloader brace. During cadaver testing, the new brace design could reduce the force exerted on the medial condyle by 25%. Radiographic images of the patient's knee confirmed that the brace unloaded the medial condyle successfully. The patient reported that the new brace reduced pain, was significantly comfortable to wear and could be used for a longer duration in comparison to his existing brace.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In