Linear Control of Neuronal Spike Timing Using Phase Response Curves

Tyler Stigen
University of Minnesota

P. Danzl and J. Moehlis
University of California–Santa Barbara

T. I. Netoff
University of Minnesota

We propose a simple, robust, and linear method to control the spike timing of a periodically firing neuron. The control scheme uses the neuron's phase response curve to identify an area of optimal sensitivity for the chosen stimulation parameters. The spike advance as a function of current pulse amplitude is characterized at the optimal phase, and a linear least-squares regression is fit to the data. The inverted regression is used as the control function for this method. The efficacy of this method is demonstrated through numerical simulations of a Hodgkin–Huxley style neuron model as well as in real neurons from rat hippocampal slice preparations. The study shows a proof of concept for the application of a linear control scheme to control neuron spike timing in vitro. This study was done on an individual cell level, but translation to a tissue or network level is possible. Control schemes of this type could be implemented in a closed loop implantable device to treat neuromotor disorders involving pathologically neuronal activity such as epilepsy or Parkinson's disease.

A Manual Insertion Mechanism for Percutaneous Cochlear Implantation

Daniel Schurzig, Zachariah W. Smith, D. Caleb Rucker, Robert F. Labadie, and Robert J. Webster III
Vanderbilt University

Percutaneous cochlear implantation (PCI) is a recently developed minimally invasive technique that utilizes image guidance and a custom-made microstereotactic frame to guide a drill directly to the cochlea. It enables cochlear access through a single drill port, reducing invasiveness in comparison to mastoidectomy. With the reduction in invasiveness, PCI enables a corresponding reduction in visualization and space in which to work at the cochlear entry point. This precludes standard cochlear implant deployment techniques and necessitates a new insertion tool that can deploy a cochlear implant into the cochlea while working down a deep, narrow channel. In this paper, we describe a manual insertion tool that we have developed for this purpose. The tool is capable of inserting an electrode array into the cochlea using the advance-off-stylet technique, using simple manual controls on its handle.