Abstract

During a design process, designers iteratively go back and forth between different design stages to explore the design space and search for the best design solution that satisfies all design constraints. For complex design problems, human has shown surprising capability in effectively reducing the dimensionality of design space and quickly converging it to a reasonable range for algorithms to step in and continue the search process. Therefore, modeling how human designers make decisions in such a sequential design process can help discover beneficial design patterns, strategies, and heuristics, which are important to the development of new algorithms embedded with human intelligence to augment computational design. In this paper, we develop a deep learning based approach to model and predict designers’ sequential decisions in a system design context. The core of this approach is an integration of the function-behavior-structure model for design process characterization and the long short term memory unit model for deep leaning. This approach is demonstrated in a solar energy system design case study, and its prediction accuracy is evaluated benchmarked on several commonly used models for sequential design decisions, such as Markov Chain model, Hidden Markov Chain model, and random sequence generation model. The results indicate that the proposed approach outperforms the other traditional models. This implies that during a system design task, designers are very likely to reply on both short-term and long-term memory of past design decisions in guiding their decision making in future design process. Our approach is general to be applied in many other design contexts as long as the sequential design action data is available.

This content is only available via PDF.
You do not currently have access to this content.