We present a general mathematical theory for the mechanical interplay in tissue-equivalents (cell-populated collagen gels): Cell traction leads to compaction of the fibrillar collagen network, which for certain conditions such as a mechanical constraint or inhomogeneous cell distribution, can result in inhomogeneous compaction and consequently fibril alignment, leading to cell contact guidance, which affects the subsequent compaction. The theory accounts for the intrinsically biphasic nature of collagen gel, which is comprised of collagen network and interstitial solution. The theory also accounts for fibril alignment due to inhomogeneous network deformation, that is, anisotropic strain, and for cell alignment in response to fibril alignment. Cell alignment results in anisotropic migration and traction, as modeled by a cell orientation tensor that is a function of a fiber orientation tensor, which is defined by the network deformation tensor. Models for a variety of tissue-equivalents are shown to predict qualitatively the alignment that arises due to inhomogeneous compaction driven by cell traction.

1.
Allen
T. D.
,
Schor
S. L.
and
Schor
A. M.
,
1984
, “
An ultrastructural review of collagen gels, a model system for cell-matrix, cell-basement membrane and cell-cell interactions
,”
Scan. Electron. Microsc.
, Vol.
1
, pp.
375
390
.
2.
Barocas, V. H., and R. T. Tranquillo, 1994, “Biphasic theory and in vitro assays of cell-fibril mechanical interactions in tissue-equivalent collagen gels,” in: Cell Mechanics and Cellular Engineering, Mow, V.C., Guilak, F., Tran-Son-Tay, R., and Hochmuth, R. M. eds., Springer-Verlag, New York, pp. 185-209.
3.
Barocas
V. H.
,
Moon
A. G.
, and
Tranquillo
R. T.
,
1995
, “
The fibroblast-populated collagen microsphere assay of cell traction force—Part 2. Measurement of the cell traction parameter
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
117
, pp.
161
170
.
4.
Barocas, V. H., and R. T. Tranquillo, 1997, “A finite element solution for the anisotropic biphasic theory of tissue-equivalent mechanics: the effect of contact guidance on isometric cell traction measurement,” ASME JOURNAL OF BIOMECHANICAL ENGINEERING, accepted.
5.
Barocas, V. H., T. S. Girton, and R. T. Tranquillo, 1997, “Engineered alignment in media-equivalents: magnetic prealignment and mandrel compaction,” ASME JOURNAL OF BIOMECHANICAL ENGINEERING, submitted.
6.
Bromberek, B. A., V. H. Barocas, and R. T. Tranquillo, 1997, “A novel in vitro wound healing and contraction assay,” in preparation.
7.
Brown
P. N.
,
Hindmarsh
A. C.
, and
Petzold
L. R.
,
1994
, “
Using Krylov methods in the solution of large-scale differential-algebraic systems
,”
SIAM J. Sci. Comp.
, Vol.
15
, pp.
1467
1488
.
8.
Dembo, M., 1994, “Continuum Theories of Cytoskeletal Mechanics: Solution by a finite element method,” Los Alamos National Laboratory Unclassified Report #94-3454.
9.
Dembo
M.
, and
Harlow
F.
,
1986
, “
Cell motion, contractile networks, and the physics of interpenetrating reactive flow
,”
Biophys J.
, Vol.
50
(
1
), pp.
109
121
.
10.
Dickinson
R. B.
,
Guido
S.
, and
Tranquillo
R. T.
,
1994
, “
Biased cell migration of fibroblasts exhibiting contact guidance in oriented collagen gels
,”
Ann. Biomed. Eng.
, Vol.
22
(
4
), pp.
342
356
.
11.
Dickinson, R. B., 1996, “A model for cell migration by contact guidance,” in: Dynamics of Cell and Tissue Motion, Alt, W., A. Deutsch, and G. A. Dunn, eds., Birkhauser Verlag, Basel.
12.
Drew
D. A.
, and
Segel
L. A.
,
1971
, “
Averaged equations for two-phase flows
,”
Studies Appl. Math.
, Vol.
1
(
3
), pp.
205
231
.
13.
Farquhar
T.
,
Dawson
P. R.
, and
Torzilli
P. A.
,
1990
, “
A microstructural model for the anisotropic drained stiffness of articular cartilage
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
112
, pp.
414
425
.
14.
Girton, T. S., V. H. Barocas, and R. T. Tranquillo, 1997, “Reorientation and alignment of collagen fibrils and tissue cells in confined conmpression of a tissue-equivalent,” in preparation.
15.
Grinnell
F.
, and
Lamke
C. R.
,
1984
, “
Reorganization of hydrated collagen lattices by human skin fibroblasts
,”
J. Cell Sci.
, Vol.
66
, pp.
51
63
.
16.
Grinnell
F.
,
1994
, “
Fibroblasts, myofibroblasts, and wound contraction
,”
J. Cell Biol.
, Vol.
124
(
4
), pp.
401
4
.
17.
Guido
S.
, and
Tranquillo
R. T.
,
1993
, “
A methodology for the systematic and quantitative study of cell contact guidance in oriented collagen gels: Correlation of fibroblast orientation and gel birefringence
,”
J. Cell Sci.
, Vol.
105
, pp.
317
331
.
18.
Guidry
C.
, and
Grinnell
F.
,
1985
, “
Studies on the mechanism of hydrated collagen gel reorganization by human skin fibroblasts
,”
J. Cell Sci.
, Vol.
79
, pp.
67
81
.
19.
Harris
A. K.
,
Stopak
D.
, and
Warner
P.
,
1984
, “
Generation of spatially periodic patterns by a mechanical instability: a mechanical alternative to the Turing model
,”
J. Embryol. Exp. Morphol.
, Vol.
80
, pp.
1
20
.
20.
Hirai
J.
,
Kanda
K.
,
Oka
T.
, and
Matsuda
T.
,
1994
, “
Highly oriented, tubular hybrid vascular tissue for a low pressure circulatory system
,”
ASAIO J.
, Vol.
40
, pp.
383
388
.
21.
Huang
D.
,
Chang
T. R.
,
Aggarwal
A.
,
Lee
R. C.
, and
Ehrlich
H. P.
,
1993
, “
Mechanisms and dynamics of mechanical strengthening in ligament-equivalent fibroblast-populated collagen matrices
,”
Ann. Biomed. Eng.
, Vol.
22
(
3
), pp.
289
305
.
22.
Klebe
R. J.
,
Caldwell
H.
, and
Milam
S.
,
1989
, “
Cells transmit spatial information by orienting collagen fibers
,”
Matrix
, Vol.
9
, pp.
451
458
.
23.
Knapp, D. M., V. H. Barocas, and R. T. Tranquillo, 1996, “Rheology of reconstituted type I collagen gel in confined compression,” J. Rheol., submitted.
24.
Kolodney
M. S.
, and
Elson
E. L.
,
1993
, “
Correlation of myosin light chain phosphorylation with isometric contraction of fibroblasts
,”
J. Biol. Chem.
, Vol.
268
(
32
), pp.
23850
23855
.
25.
L’Heureux
N.
,
Germain
L.
,
Labbe
R.
, and
Auger
F. A.
,
1993
, “
In vitro construction of a human blood vessel from cultured vascular cells: a morphologic study
,”
J. Vasc. Surg.
, Vol.
17
(
3
), pp.
499
509
.
26.
Lopez Valle
C. A.
,
Auger
F. A.
,
Rompre
R.
,
Bouvard
V.
, and
Germain
L.
,
1992
, “
Peripheral anchorage of dermal equivalents
,”
Br. J. Dermatology
, Vol.
127
, pp.
365
371
.
27.
Macosko, C. W., 1994, Rheology: Principles, Measurements, and Applications, VCH, New York.
28.
Madri
J. A.
, and
Pratt
B. M.
,
1986
, “
Endothelial cell-matrix interactions: in vitro models of angiogenesis
,”
J. Histochem. Cytochem.
, Vol.
34
(
1
), pp.
85
91
.
29.
Moon
A. G.
, and
Tranquillo
R. T.
,
1993
, “
The fibroblast-populated collagen microsphere assay of cell traction force—Part 1. Continuum Model
,”
AIChE J.
, Vol.
39
, pp.
163
177
.
30.
Mow
V. C.
,
Kuei
S. C.
,
Lai
W. M.
, and
Armstrong
C. G.
,
1980
, “
Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
102
, pp.
73
84
.
31.
Mow, V. C., M. K. Kwan, W. M. Lai, and M. H. Holmes, 1986, “A finite deformation theory for nonlinearly permeable soft hydrated biological tissues,” in: Frontiers in Biomechanics, Schmid-Schonbein, G. W., Woo, S. L.-Y., and Zweifach, B. W., eds., Springer-Verlag, New York, pp. 153–179.
32.
Nusgens
B.
,
Merrill
C.
,
Lapiere
C.
, and
Bell
E.
,
1984
, “
Collagen biosynthesis by cells in a tissue equivalent matrix in vitro
,”
Coll. Relat. Res.
, Vol.
4
(
5
), pp.
351
363
.
33.
Odell
G. M.
,
Oster
G.
,
Alberch
P.
, and
Burnside
B.
,
1981
, “
The mechanical basis of morphogenesis. I. Epithelial folding and invagination
,”
Dev. Biol.
, Vol.
85
(
2
), pp.
446
62
.
34.
Oster
G. F.
,
Murray
J. D.
, and
Harris
A. K.
,
1983
, “
Mechanical Aspects of Mesenchymal Morphogenesis
,”
J. Embryol. Exp. Res.
, Vol.
78
, pp.
83
125
.
35.
Saad
Y.
, and
Schultz
M. H.
,
1986
, “
GMRES: A generalized minimum residual algorithm for solving nonsymmetric linear systems
,”
SIAM J. Sci. Stat. Comp.
, Vol.
7
, pp.
856
869
.
36.
Sangani
A. S.
, and
Yao
C.
,
1988
, “
Transport Processes in Random Arrays of Cylinders. II. Viscous Flow
,”
Physics of Fluids
, Vol.
31
(
9
), pp.
2435
2444
.
37.
Scherer
G. W.
,
1989
a, “
Measurement of permeability—I. Theory
,”
J. Non-Crystalline Solids
, Vol.
113
, pp.
107
118
.
38.
Scherer
G. W.
,
1989
b, “
Mechanics of syneresis—I. Theory
,”
J. Non-Crystalline Solids
, Vol.
108
, pp.
18
27
.
39.
Schwartz
M.
,
Leo
P. H.
, and
Lewis
J. L.
,
1994
, “
A Microstructural Model of Articular Cartilage
,”
J. Biomech.
, Vol.
27
(
7
), pp.
865
873
.
40.
Sherratt
J. A.
, and
Lewis
J.
,
1993
, “
Stress-induced alignment of actin filaments and the mechanics of cytogel
,”
Bull. Math. Biol.
, Vol.
55
(
3
), pp.
637
654
.
41.
Simon, B. R., and M. A. Gaballa, 1988, “Finite Strain, Poroelastic Finite Element Models for Large Arterial Cross Sections,” in: Computational Methods in Bioengineering, Spilker, R. L., and Simon, B. R., eds., ASME, New York, pp. 325–333.
42.
Stopak
D.
, and
Harris
A. K.
,
1982
, “
Connective tissue morphogenesis by fibroblast traction. I. Tissue culture observations
,”
Dev Biol.
, Vol.
90
(
2
), pp.
383
398
.
43.
Tranquillo, R. T., and V. H. Barocas, 1996, “A continuum model for the role of fibroblast contact guidance in wound contraction,” in: Dynamics of Cell and Tissue Motion, Alt, W., A. Deutsch, and G. A. Dunn, eds., Birkhauser Verlag, Basel.
44.
Tranquillo
R. T.
,
Durrani
M. A.
, and
Moon
A. G.
,
1992
, “
Tissue engineering science: consequences of cell traction force
,”
Cytotechnology
, Vol.
10
, pp.
225
250
.
45.
Tranquillo
R. T.
,
Girton
T. S.
,
Bromberek
B. A.
,
Triebes
T. G.
, and
Mooradian
D. L.
,
1996
, “
Magnetically-oriented tissue-equivalent tubes: application to a circumferentially-oriented media-equivalent
,”
Biomaterials
, Vol.
17
, p.
349
349
.
46.
Weinberg
C. B.
, and
Bell
E.
,
1986
, “
A blood vessel model constructed from collagen and cultured vascular cells
,”
Science
, Vol.
231
(
4736
), pp.
397
400
.
47.
Wilkins
L. M.
,
Watson
S. R.
,
Prosky
S. J.
,
Meunier
S. F.
, and
Parenteau
N. L.
,
1994
, “
Development of a bilayered living skin construct for clinical applications
,”
Biotech. and Bioeng.
, Vol.
43
(
8
), pp.
747
756
.
48.
Yannas
I. V.
,
Burke
J. F.
,
Orgill
D. P.
, and
Skrabut
E. M.
,
1982
, “
Wound tissue can utilize a polymeric template to synthesize a functional extension of skin
,”
Science
, Vol.
215
(
4529
), pp.
174
176
.
This content is only available via PDF.
You do not currently have access to this content.