Microcracks have been associated with age-related bone tissue fragility and fractures. The objective of this study was to develop a simple osteonal cortical bone model and apply linear elastic fracture mechanics theory to understand the micromechanics of the fracture process in osteonal cortical bone and its dependence on material properties. The linear fracture mechanics of our composite model of conical bone, consisting of an osteon and interstitial bone tissue, was characterized in terms of a stress intensity factor (SIF) near the tip of a microcrack. The interaction between a microcrack and an osteon was studied for different types of osteons and various spacing between the crack and the osteon. The results of the analysis indicate that the fracture mechanics of osteonal cortical bone is dominated by the modulus ratio between the osteon and interstitial bone tissue: A soft osteon promotes microcrack propagation toward the osteon (and cement line) while a stiff one repels the microcrack from the osteon (and cement line). These findings suggest that newly formed, low-stiffness osteons may toughen cortical bone tissue by promoting crack propagation toward osteons. A relatively accurate empirical formula also was obtained to provide an easy estimation of the influence of osteons on the stress intensity factor.

1.
Advani, S. H., Lee, T.-S., and Martin, R. B., 1987, “Analysis of crack arrest by cement lines in osteonal bone,” Proc. ASME Annual Winter Meeting, Vol. 3, pp. 57–58.
2.
Ascenzi
A.
, and
Bonucci
F.
,
1967
, “
The tensile properties of single osteons
,”
Anat. Rec.
,
158
(
4)
:
375
386
.
3.
Ascenzi
A.
, and
Bonucci
E.
,
1968
, “
The compressive properties of single osteons
,”
Anat. Rec.
,
161
(
3)
:
377
391
.
4.
Ascenzi
A.
, and
Bonucci
E.
,
1976
, “
Mechanical similarities between alternate osteons and cross-ply laminates
,”
J. Biomech.
,
9
(
2)
:
65
71
.
5.
Bonfield
W.
,
1987
, “
Advances in the fracture mechanics of cortical bone
,”
J. Biomech.
,
20
(
11/12)
:
1071
1081
.
6.
Budiansky
B.
,
Hutchinson
J. W.
, and
Evans
A. G.
,
1986
, “
Matrix fracture in fiber-reinforced ceramics
,”
J. Mech. Phys. Solids
,
34
(
2)
:
167
189
.
7.
Burr
D. B.
,
Schaffler
M. B.
, and
Frederickson
R. G.
,
1988
, “
Composition of the cement line and its possible mechanical role as a local interface in human compact bone
,”
J. Biomech.
,
21
(
11)
:
939
945
.
8.
Burr
D. B.
, and
Stafford
T.
,
1990
, “
Validity of the bulk-staining technique to separate artifactual from in vivo bone microdamage
,”
Clin. Orthop.
,
260
:
305
308
.
9.
Carter
D. R.
, and
Hayes
W. C.
,
1976
, “
Fatigue life of compact bone—I. Effects of stress amplitude, temperature and density
,”
J. Biomech.
,
9
(
1)
:
27
34
.
10.
Carter
D. R.
, and
Hayes
W. C.
,
1977
, “
Compact bone fatigue damage: a microscopic examination
,”
Clin. Orthop.
,
127
:
265
274
.
11.
Cooke
F. W.
,
Zeidman
H.
, and
Scheifele
S. J.
,
1973
, “
The fracture mechanics of bone—another look at composite modeling
,”
J. Biomed. Mat. Res. Symp.
,
4
:
383
399
.
12.
Crolet
J. M.
,
Aoubiza
B.
, and
Meunier
A.
,
1993
, “
Compact bone: numerical simulation of mechanical characteristics
,”
J. Biomech.
,
26
(
6)
:
677
687
.
13.
Currey
J. D.
,
1962
, “
Stress conccntrations in bone
,”
Q. J. Micro. Sci.
,
103
:
111
133
.
14.
Dempster
W. T.
, and
Coleman
R.
,
1959
, “
Tensile strength of bone along and across the grain
,”
J. Appl. Physiol
,
16
:
355
360
.
15.
Erdogan
F.
, and
Gupta
G. D.
,
1975
, “
The inclusion problem with a crack crossing the boundary
,”
Int. J. Fracture
,
11
(
1)
:
13
27
.
16.
Erdogan, F., Gupta, G. D., and Cook, T. S., 1973, “Numerical solution of singular integral equations,” in: Methods of Analysis and Solutions of Crack Problems, G. C. Sih, ed., Leyden, Noordhoff: 369–425.
17.
Erdogan
F.
,
Gupta
G. D.
, and
Ratwani
M.
,
1974
, “
Interaction between a circular inclusion and an arbitrarily oriented crack
,”
J. Appl. Mech.
,
41
:
1007
1013
.
18.
Guo, X. E., He, M.-Y., and Goldstein, S. A., 1995, “Understanding cement line interface in bone tissue: a linear fracture mechanics approach,” ASME BED-Vol. 29, 303–304.
19.
He
M.-Y.
, and
Hutchinson
J. W.
,
1989
, “
Crack deflection at an interface between dissimilar clastic materials
,”
Int. J. Solids Structures
,
25
(
9)
:
1053
1067
.
20.
Hogan
H. A.
,
1992
, “
Micromechanics modeling of Haversial cortical bone properties
,”
J. Biomech.
,
25
(
5)
:
549
556
.
21.
Katz, J. L., 1981, “Composite material models for cortical bone,” ASME AMD-Vol. 45, 171–184.
22.
Lakes
R. S.
,
Nakamura
S.
,
Behiri
J. C.
, and
W.
B.
,
1990
, “
Fracture mechanics of bone with short cracks
,”
J. Biomech.
,
23
:
967
975
.
23.
Les, C. M., Stover, S. M., Keyak, J. H., Taylor, K. T., and Kaneps, A. J., 1995, “Stiff and strong material propertics are associated with brittle post-yield behavior in cortical bone,” Proc. 41st Annual Meeting of ORS, Orlando, FL, ORS, 1, 131.
24.
Margel-Robertson, D., 1973, “Studies of fracture in bone,” Stanford University, Ph.D. Thesis.
25.
Martin, R. B., and Burr, D. B., 1989, Structure, Function, and Adaptation of Compact Bone, Raven Press, New York.
26.
McElhaney, J. H. and Byars, E. F., 1965, “Dynamic response of biological materials,” ASME Paper No. 65-WA/HUF-9.
27.
Muller
W. H.
, and
Schmauder
S.
,
1993
, “
Stress-intensity factors of r-cracks in fiber-reinforced composites under thermal and mechanical loading
,”
Int. J. Fracture
,
59
:
307
343
.
28.
Norman
T. L.
,
Vashishth
D.
, and
Burr
D. B.
,
1995
, “
Fracture toughness of human bone under tension
,”
J. Biomech.
,
28
(
3)
:
309
320
.
29.
Parfitt
A. M.
,
1993
, “
Bone age, mineral density and fatigue damage
,”
Calcif, Tissue Int.
,
53
(Suppl.):
S82–S86
S82–S86
.
30.
Pidaparti, R. M. V., and Burr, D. B., 1991, “Stress distributions on the Haversian canal due to microcracks in a cortical bone,” ASME BED-Vol. 20, 357–359.
31.
Piekarski
K.
,
1970
, “
Fracture of bone
,”
J. Appl. Physics
,
41
(
1)
:
215
223
.
32.
Pope
M. H.
, and
Murphy
M. C.
,
1974
, “
Fracture energy of bone in a shear mode
,”
Medical and Biological Engineering
,
12
:
763
767
.
33.
Robertson
D. M.
,
Robertson
D.
, and
Barret
C. R.
,
1978
, “
Fracture toughness, critical crack length and plastic zone size in bone
,”
J. Biomech.
,
11
:
359
364
.
34.
Saha, S., 1974a, “Application of electron fractography to bone fracture,” presented at the 2nd Annual New England Bioengineering Conference, Worcester, MA.
35.
Saha, S., 1974b, “Behavior of human compact bone in tensile impact and its relation to microstructure,” presented at the 2nd Annual New England Bioengincering Conference, Worcester, MA.
36.
Saha, S., 1975, “Strength and micromechanics of bone fracture in longitudinal shear,” ASME AMD-10, xx–oo.
37.
Saha
S.
, and
Hayes
W. C.
,
1977
, “
Relations between tensile impact properties and microstructure of compact bone
,”
Calcified Tissue Research
,
24
:
65
72
.
38.
Schaffler, M. B., Choi, K., and Milgrom, C., 1994, “Microcracks and aging in human femoral compact bone,” Proc. 40th Annual Orthopædic Research Society Meeting, New Orleans, LA, ORS, 1, 190.
39.
Smikin
A.
, and
Robin
G.
,
1974
, “
Fracture formation in differing collagen fiber pattern of compact bone
,”
J. Biomech.
,
7
:
183
188
.
40.
Stover, S. M., Martin, R. B., Gibson, V. A., Gibeling, J. C., and Briffin, L. V., 1995, “Osteonal pullout increases fatigue life of cortical bone,” Proc. 41st Annual Meeting of ORS, Orlando, FL, ORS, 1, 129.
41.
Sweeney, A. W., Byers, R. K., and Kroon, R. P., 1965, “Mechanical characteristics of bone and its constituents,” ASME Paper No. 65-WA/HUF-7.
This content is only available via PDF.
You do not currently have access to this content.