The intervertebral disk (IVD) is a highly hydrated tissue, with interstitial fluid making up 80% of the wet weight of the nucleus pulposus (NP), and 70% of the annulus fibrosus (AF). It has often been modeled as a biphasic material, consisting of both a solid and fluid phase. The inherent porosity and osmotic potential of the disk causes an efflux of fluid while under constant load, which leads to a continuous displacement phenomenon known as creep. IVD compressive stiffness increases and NP pressure decreases as a result of creep displacement. Though the effects of creep on disk mechanics have been studied extensively, it has been limited to nonimpact loading conditions. The goal of this study is to better understand the influence of creep and fluid loss on IVD impact mechanics. Twenty-four human lumbar disk samples were divided into six groups according to the length of time they underwent creep (tcreep = 0, 3, 6, 9, 12, 15 h) under a constant compressive load of 400 N. At the end of tcreep, each disk was subjected to a sequence of impact loads of varying durations (timp = 80, 160, 320, 400, 600, 800, 1000 ms). Energy dissipation (ΔE), stiffness in the toe (ktoe) and linear (klin) regions, and neutral zone (NZ) were measured. Analyzing correlations with tcreep, there was a positive correlation with ΔE and NZ, along with a negative correlation with ktoe. There was no strong correlation between tcreep and klin. The data suggest that the IVD mechanical response to impact loading conditions is altered by fluid content and may result in a disk that exhibits less clinical stability and transfers more load to the AF. This could have implications for risk of diskogenic pain as a function of time of day or tissue hydration.

References

References
1.
Mow
,
V.
,
Kuei
,
S.
,
Lai
,
W.
, and
Armstrong
,
C.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
, pp.
73–84
.10.1115/1.3138202
2.
Urban
,
J. P.
, and
Roberts
,
S.
,
2003
, “
Degeneration of the Intervertebral Disc
,”
Arthritis Res. Therapy
,
5
(
3
), pp.
120
138
.10.1186/ar629
3.
Johnstone
,
B.
, and
Bayliss
,
M. T.
,
1995
, “
The Large Proteoglycans of the Human Intervertebral Disc. Changes in Their Biosynthesis and Structure With Age, Topography, and Pathology
,”
Spine
,
20
(
6
), pp.
674
684
.10.1097/00007632-199503150-00008
4.
Urban
,
J. P. G.
, and
McMullin
,
J. F.
,
1988
, “
Swelling Pressure of the Lumbar Intervertebral Discs: Influence of Age, Spinal Level, Composition, and Degeneration
,”
Spine
,
13
(
2
), pp.
179
187
.10.1097/00007632-198802000-00009
5.
Buschmann
,
M. D.
, and
Grodzinsky
,
A. J.
,
1995
, “
A Molecular Model of Proteoglycan-Associated Electrostatic Forces in Cartilage Mechanics
,”
ASME J. Biomech. Eng.
,
117
(
2
), pp.
179
192
.10.1115/1.2796000
6.
Costi
,
J. J.
,
Stokes
,
I. A.
,
Gardner-Morse
,
M. G.
, and
Iatridis
,
J. C.
,
2008
, “
Frequency-Dependent Behavior of the Intervertebral Disc in Response to Each of Six Degree of Freedom Dynamic Loading: Solid Phase and Fluid Phase Contributions
,”
Spine
,
33
(
16
), p.
1731
1738
.10.1097/BRS.0b013e31817bb116
7.
Johannessen
,
W.
,
Vresilovic
,
E. J.
,
Wright
,
A. C.
, and
Elliott
,
D. M.
,
2004
, “
Intervertebral Disc Mechanics Are Restored Following Cyclic Loading and Unloaded Recovery
,”
Ann. Biomed. Eng.
,
32
(
1
), pp.
70
76
.10.1023/B:ABME.0000007792.19071.8c
8.
Koeller
,
W.
,
Funke
,
F.
, and
Hartmann
,
F.
,
1984
, “
Biomechanical Behavior of Human Intervertebral Discs Subjected to Long Lasting Axial Loading
,”
Biorheology
,
21
(
5
), pp.
675
686
.
9.
Race
,
A.
,
Broom
,
N. D.
, and
Robertson
,
P.
,
2000
, “
Effect of Loading Rate and Hydration on the Mechanical Properties of the Disc
,”
Spine
,
25
(
6
), p.
662
669
.10.1097/00007632-200003150-00003
10.
Ferguson
,
S. J.
,
Ito
,
K.
, and
Nolte
,
L. P.
,
2004
, “
Fluid Flow and Convective Transport of Solutes Within the Intervertebral Disc
,”
J. Biomech.
,
37
(
2
), pp.
213
221
.10.1016/S0021-9290(03)00250-1
11.
Malko
,
J. A.
,
Hutton
,
W. C.
, and
Fajman
,
W. A.
,
2002
, “
An In vivo MRI Study of the Changes in Volume (and Fluid Content) of the Lumbar Intervertebral Disc After Overnight Bed Rest and During an 8-hour Walking Protocol
,”
J. Spinal Disord. Techn.
,
15
(
2
), pp.
157
163
.10.1097/00024720-200204000-00012
12.
McMillan
,
D.
,
Garbutt
,
G.
, and
Adams
,
M.
,
1996
, “
Effect of Sustained Loading on the Water Content of Intervertebral Discs: Implications for Disc Metabolism
,”
Ann. Rheumat. Disease.
,
55
(
12
), pp.
880
887
.10.1136/ard.55.12.880
13.
Adams
,
M.
,
Dolan
,
P.
,
Hutton
,
W.
, and
Porter
,
R.
,
1990
, “
Diurnal Changes in Spinal Mechanics and Their Clinical Significance
,”
J. Bone Joint Surg. Brit. Vol.
,
72
(
2
), pp.
266
270
.
14.
Nachemson
,
A.
,
Lewin
,
T.
,
Maroudas
,
A.
, and
Freeman
,
M.
,
1970
, “
In Vitro Diffusion of Dye Through the End-Plates and the Annulus Fibrosus of Human Lumbar Inter-Vertebral Discs
,”
Acta Orthopaed.
,
41
(
6
), pp.
589
607
.10.3109/17453677008991550
15.
Elias
,
P. Z.
Nuckley
,
D. J.
and
Ching
,
R. P.
,
2006
, “
Effect of Loading Rate on the Compressive Mechanics of the Immature Baboon Cervical Spine
,”
ASME J. Biomech. Eng.
,
128
, pp.
18
23
.10.1115/1.2133767
16.
El-Rich
,
M.
,
Arnoux
,
P. J.
,
Wagnac
,
E.
,
Brunet
,
C.
, and
Aubin
,
C. E.
,
2009
, “
Finite Element Investigation of the Loading Rate Effect on the Spinal Load-Sharing Changes Under Impact Conditions
,”
J. Biomech.
,
42
(
9
), pp.
1252
1262
.10.1016/j.jbiomech.2009.03.036
17.
Pintar
,
F. A.
,
Yoganandan
,
N.
, and
Voo
,
L.
,
1998
, “
Effect of Age and Loading Rate on Human Cervical Spine Injury Threshold
,”
Spine
,
23
(
18
), pp.
1957
1962
.10.1097/00007632-199809150-00007
18.
Wang
,
J. L.
,
Parnianpour
,
M.
,
Shirazi-Adl
,
A.
, and
Engin
,
A. E.
,
2000
, “
Viscoelastic Finite-Element Analysis of a Lumbar Motion Segment in Combined Compression and Sagittal Flexion: Effect of Loading Rate
,”
Spine
,
25
(
3
), pp.
310
318
.10.1097/00007632-200002010-00009
19.
Holzapfel
,
G. A.
,
Schulze-Bauer
,
C.
,
Feigl
,
G.
, and
Regitnig
,
P.
,
2005
, “
Single Lamellar Mechanics of the Human Lumbar Annulus Fibrosus
,”
Biomech. Model. Mechanobiol.
,
3
(
3
), pp.
125
140
.10.1007/s10237-004-0053-8
20.
Kemper
,
A.
,
McNally
,
C.
, and
Duma
,
S.
,
2007
, “
The Influence of Strain Rate on the Compressive Stiffness Properties of Human Lumbar Intervertebral Discs
,”
Biomed. Sci. Instrument.
,
43
, pp.
176
181
.
21.
Jamison
,
IV D.
,
Cannella
,
M.
,
Pierce
,
E. C.
, and
Marcolongo
,
M. S.
,
2013
, “
A Comparison of the Human Lumbar Intervertebral Disc Mechanical Response to Normal and Impact Loading Conditions
,”
ASME J. Biomed. Eng.
,
135
(
9
), p.
091009
.10.1115/1.4024828
22.
Lee
,
C. K.
, and
Kim
,
E.
,
2000
, “
Impact Response of the Intervertebral Disc in a Finite-Element Model
,”
Spine
,
25
(
19
), pp.
2431
2439
.10.1097/00007632-200010010-00003
23.
Cannella
,
M.
,
Arthur
,
A.
,
Allen
,
S.
,
Keane
,
M.
,
Joshi
,
A.
,
Vresilovic
,
E.
, and
Marcolongo
,
M.
,
2008
, “
The Role of the Nucleus Pulposus in Neutral Zone Human Lumbar Intervertebral Disc Mechanics
,”
J. Biomech.
,
41
(
10
), pp.
2104
2111
.10.1016/j.jbiomech.2008.04.037
24.
Izambert
,
O.
,
Mitton
,
D.
,
Thourot
,
M.
, and
Lavaste
,
F.
,
2003
, “
Dynamic Stiffness and Damping of Human Intervertebral Disc Using Axial Oscillatory Displacement Under a Free Mass System
,”
Eur. Spine J.
,
12
(
6
), pp.
562
566
.10.1007/s00586-003-0569-0
25.
Nuckley
,
D.
,
Kramer
,
P.
,
Del Rosario
,
A.
,
Fabro
,
N.
,
Baran
,
S.
, and
Ching
,
R.
,
2008
, “
Intervertebral Disc Degeneration in a Naturally Occurring Primate Model: Radiographic and Biomechanical Evidence
,”
J. Orthopaed. Res.
,
26
(
9
), pp.
1283
1288
.10.1002/jor.20526
26.
Wilke
,
H.
,
Wenger
,
K.
, and
Claes
,
L.
,
1998
, “
Testing Criteria for Spinal Implants: Recommendations for the Standardization of in vitro Stability Testing of Spinal Implants
,”
Eur. Spine J.
,
7
(
2
), pp.
148
154
.10.1007/s005860050045
27.
Pflaster
,
D. S.
,
Krag
,
M. H.
,
Johnson
,
C. C.
,
Haugh
,
L. D.
, and
Pope
,
M. H.
,
1997
, “
Effect of Test Environment on Intervertebral Disc Hydration
,”
Spine
,
22
(
2
), pp.
133
139
.10.1097/00007632-199701150-00003
28.
Schmidt
,
H.
,
Shirazi-Adl
,
A.
,
Galbusera
,
F.
, and
Wilke
,
H.-J.
,
2010
, “
Response Analysis of the Lumbar Spine During Regular Daily Activities—A Finite Element Analysis
,”
J. Biomech.
,
43
(
10
), pp.
1849
1856
.10.1016/j.jbiomech.2010.03.035
29.
Kasra
,
M.
,
Shirazi-Adl
,
A.
, and
Drouin
,
G.
,
1992
, “
Dynamics of Human Lumbar Intervertebral Joints: Experimental and Finite-Element Investigations
,”
Spine
,
17
(
1
), pp.
93
102
.10.1097/00007632-199201000-00014
30.
Rostedt
,
M.
,
Ekström
,
L.
,
Broman
,
H.
, and
Hansson
,
T.
,
1998
, “
Axial Stiffness of Human Lumbar Motion Segments, Force Dependence
,”
J. Biomech.
,
31
(
6
), pp.
503
509
.10.1016/S0021-9290(98)00037-2
31.
Adams
,
M. A.
, and
Hutton
,
W. C.
,
1983
, “
The Effect of Fatigue on the Lumbar Intervertebral Disc
,”
J. Bone Joint Surg. Brit. Vol.
,
65
(
2
), pp.
199
203
.
32.
White
,
A. A.
, and
Panjabi
,
M. M.
,
1990
,
Clinical Biomechanics of the Spine
,
Philadelphia, PA
.
33.
Wilke
,
H. J.
,
Krischak
,
S.
,
Wenger
,
K.
, and
Claes
,
L.
,
1997
, “
Load-Displacement Properties of the Thoracolumbar Calf Spine: Experimental Results and Comparison to Known Human Data
,”
Eur. Spine J.
,
6
(
2
), pp.
129
137
.10.1007/BF01358746
34.
Fisher
,
R. A.
,
1921
, “
On the” Probable Error of a Coefficient of Correlation Deduced From a Small Sample
,”
Metron
,
1
, pp.
3
32
.
35.
Massey
,
C. J.
,
van Donkelaar
,
C. C.
,
Vresilovic
,
E.
,
Zavaliangos
,
A.
, and
Marcolongo
,
M.
,
2012
, “
Effects of Aging and Degeneration on the Human Intervertebral Disc During the Diurnal Cycle: A Finite Element Study
,”
J. Orthopaed. Res
.,
30
(1), pp.
122
128
.
36.
O'Connell
,
G. D.
,
Jacobs
,
N. T.
,
Sen
,
S.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2011
, “
Axial Creep Loading and Unloaded Recovery of the Human Intervertebral Disc and the Effect of Degeneration
,”
J. Mech. Beh. Biomed. Mat.
,
4
(
7
), pp.
933
942
.10.1016/j.jmbbm.2011.02.002
37.
Massey
,
C. J.
,
2009
, “
Finite Element Analysis and Materials Characterization of Changes Due to Aging and Degeneration of the Human Intervertebral Disc
,” Doctor of Philosophy, Drexel University, Philadelphia, PA.
38.
Nachemson
,
A.
,
1960
, “
Lumbar Intradiscal Pressure. Experimental Studies on Post-Mortem Material
,”
Acta Orthopaed. Scand. Suppl.
,
43
, pp.
1
104
.
39.
Adams
,
M.
,
McMillan
,
D.
,
Green
,
T.
, and
Dolan
,
P.
,
1996
, “
Sustained Loading Generates Stress Concentrations in Lumbar Intervertebral Discs
,”
Spine
,
21
(
4
), pp.
434
438
.10.1097/00007632-199602150-00006
40.
Gardner-Morse
,
M. G.
, and
Stokes
,
I. A.
,
2003
, “
Physiological Axial Compressive Preloads Increase Motion Segment Stiffness, Linearity and Hysteresis in All Six Degrees of Freedom for Small Displacements About the Neutral Posture
,”
J. Orthopaed. Res.
,
21
(
3
), pp.
547
552
.10.1016/S0736-0266(02)00199-7
41.
Adams
,
M. A.
,
Dolan
,
P.
, and
McNally
,
D. S.
,
2009
, “
The Internal Mechanical Functioning of Intervertebral Discs and Articular Cartilage, and Its Relevance to Matrix Biology
,”
Matrix Biol.
,
28
(
7
), pp.
384
389
.10.1016/j.matbio.2009.06.004
42.
Langrana
,
N. A.
,
Edwards
,
W. T.
, and
Sharma
,
M.
,
1996
, “
Biomechanical Analyses of Loads on the Lumbar Spine
,”
The Lumbar Spine
,
S. W.
Weisel
, ed.,
W. B. Saunders Co., Philadelphia, PA
, pp.
163
181
.
43.
Beckstein
,
J. C.
,
Sen
,
S.
,
Schaer
,
T. P.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2008
, “
Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc: Axial Compression Mechanics and Glycosaminoglycan Content
,”
Spine
,
33
(
6
), pp.
E166
E173
.10.1097/BRS.0b013e318166e001
44.
Brinckmann
,
P.
, and
Grootenboer
,
H.
,
1991
, “
Change of Disc Height, Radial Disc Bulge, and Intradiscal Pressure From Discectomy. An in vitro Investigation on Human Lumbar Discs
,”
Spine
,
16
(
6
), pp.
641
646
.10.1097/00007632-199106000-00008
45.
Shea
,
M.
,
Takeuchi
,
T.
,
Wittenberg
,
R.
,
White
,
A. A.
, and
Hayes
,
W.
,
1994
, “
A Comparison of the Effects of Automated Percutaneous Diskectomy and Conventional Diskectomy on Intradiscal Pressure, Disk Geometry, and Stiffness
,”
J. Spinal Disord.
,
7
(
4
), pp.
317
325
.10.1097/00002517-199408000-00005
46.
Jamison
IV,
D.
,
Cannella
,
M.
,
Pierce
,
E.
,
Martin
,
S.
, and
Marcolongo
,
M.
, “
Analysis of Mechanical Behavior of the Lumbar Spine Under High Impact Loading
,”
Proc. International Conference on Human Performance at Sea
, University of Strathclyde, pp.
203
206
.
47.
Yingling
,
V. R.
,
Callaghan
,
J. P.
, and
McGill
,
S. M.
,
1997
, “
Dynamic Loading Affects the Mechanical Properties and Failure Site of Porcine Spines
,”
Clin. Biomech.
,
12
(
5
), pp.
301
305
.10.1016/S0268-0033(97)00009-0
48.
Spenciner
,
D.
,
Greene
,
D.
,
Paiva
,
J.
,
Palumbo
,
M.
, and
Crisco
,
J.
,
2006
, “
The Multidirectional Bending Properties of the Human Lumbar Intervertebral Disc
,”
Spine J.
,
6
(
3
), pp.
248
257
.10.1016/j.spinee.2005.08.020
49.
Adams
,
M. A.
,
2004
, “
Biomechanics of Back Pain
,”
Acupuncture Med.
,
22
(
4
), pp.
178
188
.10.1136/aim.22.4.178
50.
An
,
H. S.
,
Masuda
,
K.
, and
Inoue
,
N.
,
2006
, “
Intervertebral Disc Degeneration: Biological and Biomechanical Factors
,”
J. Orthopaed. Sci.
,
11
(
5
), pp.
541
552
.10.1007/s00776-006-1055-4
You do not currently have access to this content.