Patient-specific biventricular computational models associated with a normal subject and a pulmonary arterial hypertension (PAH) patient were developed to investigate the disease effects on ventricular mechanics. These models were developed using geometry reconstructed from magnetic resonance (MR) images, and constitutive descriptors of passive and active mechanics in cardiac tissues. Model parameter values associated with ventricular mechanical properties and myofiber architecture were obtained by fitting the models with measured pressure–volume loops and circumferential strain calculated from MR images using a hyperelastic warping method. Results show that the peak right ventricle (RV) pressure was substantially higher in the PAH patient (65 mmHg versus 20 mmHg), who also has a significantly reduced ejection fraction (EF) in both ventricles (left ventricle (LV): 39% versus 66% and RV: 18% versus 64%). Peak systolic circumferential strain was comparatively lower in both the left ventricle (LV) and RV free wall (RVFW) of the PAH patient (LV: −6.8% versus −13.2% and RVFW: −2.1% versus −9.4%). Passive stiffness, contractility, and myofiber stress in the PAH patient were all found to be substantially increased in both ventricles, whereas septum wall in the PAH patient possessed a smaller curvature than that in the LV free wall. Simulations using the PAH model revealed an approximately linear relationship between the septum curvature and the transseptal pressure gradient at both early-diastole and end-systole. These findings suggest that PAH can induce LV remodeling, and septum curvature measurements may be useful in quantifying transseptal pressure gradient in PAH patients.

References

References
1.
McLaughlin
,
V. V.
,
Archer
,
S. L.
,
Badesch
,
D. B.
,
Barst
,
R. J.
,
Farber
,
H. W.
,
Lindner
,
J. R.
,
Mathier
,
M. A.
,
McGoon
,
M. D.
,
Park
,
M. H.
,
Rosenson
,
R. S.
,
Rubin
,
L. J.
,
Tapson
, V
. F.
, and
Varga
,
J.
,
2009
, “
ACCF/AHA 2009 Expert Consensus Document on Pulmonary Hypertension: A Report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association Developed in Collaboration With the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association
,”
J. Am. Coll. Cardiol.
,
53
(
17
), pp.
1573
1619
.
2.
Thenappan
,
T.
,
Shah
,
S. J.
,
Rich
,
S.
, and
Gomberg-Maitland
,
M.
,
2007
, “
A USA-Based Registry for Pulmonary Arterial Hypertension: 1982–2006
,”
Eur. Respir. J.
,
30
(
6
), pp.
1103
1110
.
3.
Humbert
,
M.
,
Sitbon
,
O.
,
Yaïci
,
A.
,
Montani
,
D.
,
O’Callaghan
,
D. S.
,
Jaïs
,
X.
,
Parent
,
F.
,
Savale
,
L.
,
Natali
,
D.
,
Günther
,
S.
,
Chaouat
,
A.
,
Chabot
,
F.
,
Cordier
,
J. F.
,
Habib
,
G.
,
Gressin
,
V.
,
Jing
,
Z. C.
,
Souza
,
R.
, and
Simonneau
,
G.
,
2010
, “
Survival in Incident and Prevalent Cohorts of Patients With Pulmonary Arterial Hypertension
,”
Eur. Respir. J.
,
36
(
3
), pp.
549
555
.
4.
Vonk Noordegraaf
,
A.
, and
Galiè
,
N.
,
2011
, “
The Role of the Right Ventricle in Pulmonary Arterial Hypertension
,”
Eur. Respir. Rev.
,
20
(
122
), pp.
243
253
.
5.
Jessup
,
M.
,
Sutton
,
M. S.
,
Weber
,
K. T.
, and
Janicki
,
J. S.
,
1987
, “
The Effect of Chronic Pulmonary Hypertension on Left Ventricular Size, Function, and Interventricular Septal Motion
,”
Am. Heart J.
,
113
(
5
), pp.
1114
1122
.
6.
Borgdorff
,
M. A. J.
,
Dickinson
,
M. G.
,
Berger
,
R. M. F.
, and
Bartelds
,
B.
,
2015
, “
Right Ventricular Failure Due to Chronic Pressure Load: What Have We Learned in Animal Models Since the NIH Working Group Statement?
Heart Failure Rev.
,
20
(
4
), pp.
475
491
.
7.
Hill
,
M. R.
,
Simon
,
M. A.
,
Valdez-Jasso
,
D.
,
Zhang
,
W.
,
Champion
,
H. C.
, and
Sacks
,
M. S.
,
2014
, “
Structural and Mechanical Adaptations of Right Ventricle Free Wall Myocardium to Pressure Overload
,”
Ann. Biomed. Eng.
,
42
(
12
), pp.
2451
2465
.
8.
Wang
,
Z.
,
Schreier
,
D. A.
,
Hacker
,
T. A.
, and
Chesler
,
N. C.
,
2013
, “
Progressive Right Ventricular Functional and Structural Changes in a Mouse Model of Pulmonary Arterial Hypertension
,”
Physiol. Rep.
,
1
(
7
), p.
e00184
.
9.
McCabe
,
C.
,
White
,
P. A.
,
Hoole
,
S. P.
,
Axell
,
R. G.
,
Priest
,
A. N.
,
Gopalan
,
D.
,
Taboada
,
D.
,
MacKenzie Ross
,
R.
,
Morrell
,
N. W.
,
Shapiro
,
L. M.
, and
Pepke-Zaba
,
J.
,
2014
, “
Right Ventricular Dysfunction in Chronic Thromboembolic Obstruction of the Pulmonary Artery: A Pressure–Volume Study Using the Conductance Catheter
,”
J. Appl. Physiol.
,
116
(
29
), pp.
355
363
.
10.
Trip
,
P.
,
Rain
,
S.
,
Handoko
,
M. L.
,
Van Der Bruggen
,
C.
,
Bogaard
,
H. J.
,
Marcus
,
J. T.
,
Boonstra
,
A.
,
Westerhof
,
N.
,
Vonk-Noordegraaf
,
A.
, and
De Man
,
F. S.
,
2015
, “
Clinical Relevance of Right Ventricular Diastolic Stiffness in Pulmonary Hypertension
,”
Eur. Respir. J.
,
45
(
6
), pp.
1603
1612
.
11.
Lee
,
L. C.
,
Wenk
,
J. F.
,
Klepach
,
D.
,
Zhang
,
Z.
,
Saloner
,
D.
,
Wallace
,
A. W.
,
Ge
,
L.
,
Ratcliffe
,
M. B.
, and
Guccione
,
J. M.
,
2011
, “
A Novel Method for Quantifying In-Vivo Regional Left Ventricular Myocardial Contractility in the Border Zone of a Myocardial Infarction
,”
ASME J. Biomech. Eng.
,
133
(
9
), p.
094506
.
12.
Aguado-Sierra
,
J.
,
Krishnamurthy
,
A.
,
Villongco
,
C.
,
Chuang
,
J.
,
Howard
,
E.
,
Gonzales
,
M. J.
,
Omens
,
J.
,
Krummen
,
D. E.
,
Narayan
,
S.
,
Kerckhoffs
,
R. C. P.
, and
McCulloch
,
A. D.
,
2011
, “
Patient-Specific Modeling of Dyssynchronous Heart Failure: A Case Study
,”
Prog. Biophys. Mol. Biol.
,
107
(
1
), pp.
147
155
.
13.
Baillargeon
,
B.
,
Costa
,
I.
,
Leach
,
J. R.
,
Lee
,
L. C.
,
Genet
,
M.
,
Toutain
,
A.
,
Wenk
,
J. F.
,
Rausch
,
M. K.
,
Rebelo
,
N.
,
Acevedo-Bolton
,
G.
,
Kuhl
,
E.
,
Navia
,
J. L.
, and
Guccione
,
J. M.
,
2015
, “
Human Cardiac Function Simulator for the Optimal Design of a Novel Annuloplasty Ring With a Sub-Valvular Element for Correction of Ischemic Mitral Regurgitation
,”
Cardiovasc. Eng. Technol.
,
6
(
2
), pp.
105
116
.
14.
Wenk
,
J. F.
,
Zhang
,
Z.
,
Cheng
,
G.
,
Malhotra
,
D.
,
Acevedo-Bolton
,
G.
,
Burger
,
M.
,
Suzuki
,
T.
,
Saloner
,
D. A.
,
Wallace
,
A. W.
,
Guccione
,
J. M.
, and
Ratcliffe
,
M. B.
,
2010
, “
First Finite Element Model of the Left Ventricle With Mitral Valve: Insights Into Ischemic Mitral Regurgitation
,”
Ann. Thorac. Surg.
,
89
(
5
), pp.
1546
1553
.
15.
Lee
,
L. C.
,
Wall
,
S. T.
,
Genet
,
M.
,
Hinson
,
A.
, and
Guccione
,
J. M.
,
2014
, “
Bioinjection Treatment: Effects of Post-Injection Residual Stress on Left Ventricular Wall Stress
,”
J. Biomech.
,
47
(
12
), pp.
3115
3119
.
16.
Hunter
,
K. S.
,
Feinstein
,
J. A.
,
Ivy
,
D. D.
, and
Shandas
,
R.
,
2010
, “
Computational Simulation of the Pulmonary Arteries and Its Role in the Study of Pediatric Pulmonary Hypertension
,”
Prog. Pediatr. Cardiol.
,
30
(
1–2
), pp.
63
69
.
17.
Kheyfets
, V
. O.
,
Rios
,
L.
,
Smith
,
T.
,
Schroeder
,
T.
,
Mueller
,
J.
,
Murali
,
S.
,
Lasorda
,
D.
,
Zikos
,
A.
,
Spotti
,
J.
,
Reilly
,
J. J.
, and
Finol
,
E. A.
,
2015
, “
Patient-Specific Computational Modeling of Blood Flow in the Pulmonary Arterial Circulation
,”
Comput. Methods Programs Biomed.
,
120
(
2
), pp.
88
101
.
18.
Voelkel
,
N. F.
,
Quaife
,
R. A.
,
Leinwand
,
L. A.
,
Barst
,
R. J.
,
McGoon
,
M. D.
,
Meldrum
,
D. R.
,
Dupuis
,
J.
,
Long
,
C. S.
,
Rubin
,
L. J.
,
Smart
,
F. W.
,
Suzuki
,
Y. J.
,
Gladwin
,
M.
,
Denholm
,
E. M.
, and
Gail
,
D. B.
,
2006
, “
Right Ventricular Function and Failure: Report of a National Heart, Lung, and Blood Institute Working Group on Cellular and Molecular Mechanisms of Right Heart Failure
,”
Circulation
,
114
(
17
), pp.
1883
1891
.
19.
Geuzaine
,
C.
, and
Remacle
,
J.-F. F.
,
2009
, “
Gmsh: A 3-D Finite Element Mesh Generator With Built-In Pre- and Post-Processing Facilities
,”
Int. J. Numer. Methods Eng.
,
79
(
11
), pp.
1309
1331
.
20.
Redington
,
A. N.
,
Gray
,
H. H.
,
Hodson
,
M. E.
,
Rigby
,
M. L.
, and
Oldershaw
,
P. J.
,
1988
, “
Characterisation of the Normal Right Ventricular Pressure–Volume Relation by Biplane Angiography and Simultaneous Micromanometer Pressure Measurements
,”
Br. Heart J.
,
59
(
1
), pp.
23
30
.
21.
Kelly
,
R. P.
,
Ting
,
C. T.
,
Yang
,
T. M.
,
Liu
,
C. P.
,
Maughan
,
W. L.
,
Chang
,
M. S.
, and
Kass
,
D. A.
,
1992
, “
Effective Arterial Elastance as Index of Arterial Vascular Load in Humans
,”
Circulation
,
86
(
2
), pp.
513
521
.
22.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
FEBio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
)
, p.
011005
.
23.
Veress
,
A. I.
,
Gullberg
,
G. T.
, and
Weiss
,
J. A.
,
2005
, “
Measurement of Strain in the Left Ventricle During Diastole With Cine-MRI and Deformable Image Registration
,”
ASME J. Biomech. Eng.
,
127
(
7
), pp.
1195
1207
.
24.
Phatak
,
N. S.
,
Maas
,
S. A.
,
Veress
,
A. I.
,
Pack
,
N. A.
,
Di Bella
,
E. V. R.
, and
Weiss
,
J. A.
,
2009
, “
Strain Measurement in the Left Ventricle During Systole With Deformable Image Registration
,”
Med. Image Anal.
,
13
(
2
), pp.
354
361
.
25.
Bayer
,
J. D.
,
Blake
,
R. C.
,
Plank
,
G.
, and
Trayanova
,
N. A.
,
2012
, “
A Novel Rule-Based Algorithm for Assigning Myocardial Fiber Orientation to Computational Heart Models
,”
Ann. Biomed. Eng.
,
40
(
10
), pp.
2243
2254
.
26.
Streeter
,
D. D.
,
Spotnitz
,
H. M.
,
Patel
,
D. P.
,
Ross
,
J.
, and
Sonnenblick
,
E. H.
,
1969
, “
Fiber Orientation in the Canine Left Ventricle During Diastole and Systole
,”
Circ. Res.
,
24
(
3
), pp.
339
347
.
27.
Sundnes
,
J.
,
Wall
,
S.
,
Osnes
,
H.
,
Thorvaldsen
,
T.
, and
McCulloch
,
A. D.
,
2012
, “
Improved Discretisation and Linearisation of Active Tension in Strongly Coupled Cardiac Electro-Mechanics Simulations
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
6
), pp.
604
615
.
28.
Lee
,
L.
,
Sundnes
,
J.
,
Genet
,
M.
,
Wenk
,
J.
, and
Wall
,
S. T.
,
2016
, “
An Integrated Electromechanical-Reversible Growth Heart Model for Simulating Cardiac Therapies
,”
Biomech. Model. Mechanobiol.
,
15
(
4
), pp.
791
803
.
29.
Winslow
,
R. L.
,
Rice
,
J.
,
Jafri
,
S.
,
Marban
,
E.
, and
O’Rourke
,
B.
,
1999
, “
Mechanisms of Altered Excitation–Contraction Coupling in Canine Tachycardia-Induced Heart Failure, II: Model Studies
,”
Circ. Res.
,
84
(
5
), pp.
571
586
.
30.
Rice
,
J. J.
,
Wang
,
F.
,
Bers
,
D. M.
, and
de Tombe
,
P. P.
,
2008
, “
Approximate Model of Cooperative Activation and Crossbridge Cycling in Cardiac Muscle Using Ordinary Differential Equations
,”
Biophys. J.
,
95
(
5
), pp.
2368
2390
.
31.
Moskowitz
,
S. E.
,
1981
, “
Effects of Inertia and Viscoelasticity in Late Rapid Filling of the Left Ventricle
,”
J. Biomech.
,
14
(
6
), pp.
443
445
.
32.
Walker
,
J. C.
,
Ratcliffe
,
M. B.
,
Zhang
,
P.
,
Wallace
,
A. W.
,
Hsu
,
E. W.
,
Saloner
,
D. A.
, and
Guccione
,
J. M.
,
2008
, “
Magnetic Resonance Imaging-Based Finite Element Stress Analysis After Linear Repair of Left Ventricular Aneurysm
,”
J. Thorac. Cardiovasc. Surg.
,
135
(
5
), pp.
1094
1102.e2
.
33.
Smith
,
B. C. F.
,
Dobson
,
G.
,
Dawson
,
D.
,
Charalampopoulos
,
A.
,
Grapsa
,
J.
, and
Nihoyannopoulos
,
P.
,
2014
, “
Three-Dimensional Speckle Tracking of the Right Ventricle: Toward Optimal Quantification of Right Ventricular Dysfunction in Pulmonary Hypertension
,”
J. Am. Coll. Cardiol.
,
64
(
1
), pp.
41
51
.
34.
Oyama-Manabe
,
N.
,
Sato
,
T.
,
Tsujino
,
I.
,
Kudo
,
K.
,
Manabe
,
O.
,
Kato
,
F.
,
Osman
,
N. F.
, and
Terae
,
S.
,
2013
, “
The Strain-Encoded (SENC) MR Imaging for Detection of Global Right Ventricular Dysfunction in Pulmonary Hypertension
,”
Int. J. Cardiovasc. Imaging
,
29
(
2
), pp.
371
378
.
35.
Puwanant
,
S.
,
Park
,
M.
,
Popović
,
Z. B.
,
Tang
,
W. H. W.
,
Farha
,
S.
,
George
,
D.
,
Sharp
,
J.
,
Puntawangkoon
,
J.
,
Loyd
,
J. E.
,
Erzurum
,
S. C.
, and
Thomas
,
J. D.
,
2010
, “
Ventricular Geometry, Strain, and Rotational Mechanics in Pulmonary Hypertension
,”
Circulation
,
121
(
2
), pp.
259
266
.
36.
Bellofiore
,
A.
, and
Chesler
,
N. C.
,
2013
, “
Methods for Measuring Right Ventricular Function and Hemodynamic Coupling With the Pulmonary Vasculature
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1384
1398
.
37.
Cohn
,
J. N.
,
Ferrari
,
R.
, and
Sharpe
,
N.
,
2000
, “
Cardiac Remodeling Concepts and Clinical Implications: A Consensus Paper From an International Forum on Cardiac Remodeling
,”
J. Am. Coll. Cardiol.
,
35
(
3
), pp.
569
582
.
38.
Rain
,
S.
,
Handoko
,
L.
,
Trip
,
P.
,
Gan
,
T.-J.
,
Westerhof
,
N.
,
Stienen
,
G.
,
Paulus
,
W.
,
Ottenheijm
,
C.
,
Marcus
,
T.
,
Dorfmüller
,
P.
,
Guignabert
,
C.
,
Humbert
,
M.
,
MacDonald
,
P.
,
dos Remedios
,
C.
,
Postmus
,
P.
,
Saripalli
,
C.
,
Hidalgo
,
C.
,
Granzier
,
H.
,
Vonk-Noordegraaf
,
A.
,
van der Velden
,
J.
, and
de Man
,
F.
,
2013
, “
Right Ventricular Diastolic Impairment in Patients With Pulmonary Arterial Hypertension
,”
Circulation
,
128
(
18
), pp.
2016
2025
.
39.
De Man
,
F. S.
,
Handoko
,
M. L.
,
Van Ballegoij
,
J. J. M.
,
Schalij
,
I.
,
Bogaards
,
S. J. P.
,
Postmus
,
P. E.
,
Van Der Velden
,
J.
,
Westerhof
,
N.
,
Paulus
,
W. J.
, and
Vonk-Noordegraaf
,
A.
,
2012
, “
Bisoprolol Delays Progression Towards Right Heart Failure in Experimental Pulmonary Hypertension
,”
Circ.: Heart Failure
,
5
(
1
), pp.
97
105
.
40.
Vonk-Noordegraaf
,
A.
,
Haddad
,
F.
,
Chin
,
K. M.
,
Forfia
,
P. R.
,
Kawut
,
S. M.
,
Lumens
,
J.
,
Naeije
,
R.
,
Newman
,
J.
,
Oudiz
,
R. J.
,
Provencher
,
S.
,
Torbicki
,
A.
,
Voelkel
,
N. F.
, and
Hassoun
,
P. M.
,
2013
, “
Right Heart Adaptation to Pulmonary Arterial Hypertension: Physiology and Pathobiology
,”
J. Am. Coll. Cardiol.
,
62
(Suppl.
25
), pp.
D22
D33
.
41.
Hardziyenka
,
M.
,
Campian
,
M. E.
,
Verkerk
,
A. O.
,
Surie
,
S.
,
van Ginneken
,
A. C.
,
Hakim
,
S.
,
Linnenbank
,
A. C.
,
de Bruin-Bon
,
H. A.
,
Beekman
,
L.
,
van der Plas
,
M. N.
,
Remme
,
C. A.
,
van Veen
,
T. A.
,
Bresser
,
P.
,
de Bakker
,
J. M.
, and
Tan
,
H. L.
,
2012
, “
Electrophysiologic Remodeling of the Left Ventricle in Pressure Overload-Induced Right Ventricular Failure
,”
J. Am. Coll. Cardiol.
,
59
(
24
), pp.
2193
2202
.
42.
Haddad
,
F.
,
Hunt
,
S. A.
,
Rosenthal
,
D. N.
, and
Murphy
,
D. J.
,
2008
, “
Right Ventricular Function in Cardiovascular Disease, Part I: Anatomy, Physiology, Aging, and Functional Assessment of the Right Ventricle
,”
Circulation
,
117
(
11
), pp.
1436
1448
.
43.
Marcus
,
J. T.
,
Vonk Noordegraaf
,
A.
,
Roeleveld
,
R. J.
,
Postmus
,
P. E.
,
Heethaar
,
R. M.
,
Van Rossum
,
A. C.
, and
Boonstra
,
A.
,
2001
, “
Impaired Left Ventricular Filling Due to Right Ventricular Pressure Overload in Primary Pulmonary Hypertension: Noninvasive Monitoring Using MRI
,”
Chest
,
119
(
6
), pp.
1761
1765
.
44.
Tanaka
,
H.
,
Tei
,
C.
,
Nakao
,
S.
,
Tahara
,
M.
,
Sakurai
,
S.
,
Kashima
,
T.
, and
Kanehisa
,
T.
,
1980
, “
Diastolic Bulging of the Interventricular Septum Toward the Left Ventricle. An Echocardiographic Manifestation of Negative Interventricular Pressure Gradient Between Left and Right Ventricles During Diastole
,”
Circulation
,
62
(
3
), pp.
558
563
.
45.
Beyar
,
R.
,
Dong
,
S. J.
,
Smith
,
E. R.
,
Belenkie
,
I.
, and
Tyberg
,
J. V.
,
1993
, “
Ventricular Interaction and Septal Deformation: A Model Compared With Experimental Data
,”
Am. J. Physiol.
,
265
(
6 Pt. 2
), pp.
H2044
H2056
.
46.
King
,
M. E.
,
Braun
,
H.
,
Goldblatt
,
A.
,
Liberthson
,
R.
, and
Weyman
,
A. E.
,
1983
, “
Interventricular Septal Configuration as a Predictor of Right Ventricular Systolic Hypertension in Children: A Cross-Sectional Echocardiographic Study
,”
Circulation
,
68
(
1
), pp.
68
75
.
47.
Zhong
,
L.
,
Su
,
Y.
,
Yeo
,
S.-Y.
,
Tan
,
R.-S.
,
Ghista
,
D. N.
, and
Kassab
,
G.
,
2009
, “
Left Ventricular Regional Wall Curvedness and Wall Stress in Patients With Ischemic Dilated Cardiomyopathy
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
296
(
3
), pp.
H573
H584
.
48.
Zhong
,
L.
,
Su
,
Y.
,
Gobeawan
,
L.
,
Sola
,
S.
,
Tan
,
R.-S.
,
Navia
,
J. L.
,
Ghista
,
D. N.
,
Chua
,
T.
,
Guccione
,
J.
, and
Kassab
,
G. S.
,
2011
, “
Impact of Surgical Ventricular Restoration on Ventricular Shape, Wall Stress, and Function in Heart Failure Patients
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
300
(
5
), pp.
H1653
H1660
.
49.
Zhong
,
L.
,
Gobeawan
,
L.
,
Su
,
Y.
,
Tan
,
J.-L.
,
Ghista
,
D.
,
Chua
,
T.
,
Tan
,
R.-S.
, and
Kassab
,
G.
,
2012
, “
Right Ventricular Regional Wall Curvedness and Area Strain in Patients With Repaired Tetralogy of Fallot
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
302
(
6
), pp.
H1306
H1316
.
50.
Walker
,
J. C.
,
Ratcliffe
,
M. B.
,
Zhang
,
P.
,
Wallace
,
A. W.
,
Fata
,
B.
,
Hsu
,
E. W.
,
Saloner
,
D.
, and
Guccione
,
J. M.
,
2005
, “
MRI-Based Finite-Element Analysis of Left Ventricular Aneurysm
,”
Am. J. Physiol.
,
289
(
2
), pp.
H692
H700
.
51.
Kerckhoffs
,
R. C. P.
,
2010
,
Patient-Specific Modeling of the Cardiovascular System: Technology-Driven Personalized Medicine
,
Springer Science + Business Media
,
New York
, pp.
1
240
.
52.
Genet
,
M.
,
Lee
,
L. C.
,
Nguyen
,
R.
,
Haraldsson
,
H.
,
Acevedo-Bolton
,
G.
,
Zhang
,
Z.
,
Ge
,
L.
,
Ordovas
,
K.
,
Kozerke
,
S.
, and
Guccione
,
J. M.
,
2014
, “
Distribution of Normal Human Left Ventricular Myofiber Stress at End-Diastole and End-Systole—A Target for In Silico Studies of Cardiac Procedures
,”
J. Appl. Physiol.
,
117
(
2
), pp.
142
152
.
You do not currently have access to this content.