Abstract

Soft biological tissues consist of cells and extracellular matrix (ECM), a network of diverse proteins, glycoproteins, and glycosaminoglycans that surround the cells. The cells actively sense the surrounding ECM and regulate its mechanical state. Cell-seeded collagen or fibrin gels, so-called tissue equivalents, are simple but powerful model systems to study this phenomenon. Nevertheless, few quantitative studies document the stresses that cells establish and maintain in such gels; moreover, most prior data were collected via uniaxial experiments whereas soft tissues are mainly subject to multiaxial loading in vivo. To begin to close this gap between existing experimental data and in vivo conditions, we describe here a computer-controlled bioreactor that enables accurate measurements of the evolution of mechanical tension and deformation of tissue equivalents under well-controlled biaxial loads. This device allows diverse studies, including how cells establish a homeostatic state of biaxial stress and if they maintain it in response to mechanical perturbations. It similarly allows, for example, studies of the impact of cell and matrix density, exogenous growth factors and cytokines, and different types of loading conditions (uniaxial, strip-biaxial, and biaxial) on these processes. As illustrative results, we show that NIH/3T3 fibroblasts establish a homeostatic mechanical state that depends on cell density and collagen concentration. Following perturbations from this homeostatic state, the cells were able to recover biaxial loading similar to homeostatic. Depending on the precise loads, however, they were not always able to fully maintain that state.

References

References
1.
Lu
,
P.
,
Takai
,
K.
,
Weaver
,
V. M.
, and
Werb
,
Z.
,
2011
, “
Extracellular Matrix Degradation and Remodeling in Development and Disease
,”
Cold Spring Harb. Perspect. Biol.
,
3
(
12
), pp.
1
24
.10.1101/cshperspect.a005058
2.
Humphrey
,
J. D.
,
Dufresne
,
E. R.
, and
Schwartz
,
M. A.
,
2014
, “
Mechanotransduction and Extracellular Matrix Homeostasis
,”
Nat. Rev. Mol. Cell Biol.
,
15
(
12
), pp.
802
812
.10.1038/nrm3896
3.
Ross
,
T. D.
,
Coon
,
B. G.
,
Yun
,
S.
,
Baeyens
,
N.
,
Tanaka
,
K.
,
Ouyang
,
M.
, and
Schwartz
,
M. A.
,
2013
, “
Integrins in Mechanotransduction
,”
Curr. Opin. Cell Biol.
,
25
(
5
), pp.
613
618
.10.1016/j.ceb.2013.05.006
4.
Cox
,
T. R.
, and
Erler
,
J. T.
,
2011
, “
Remodeling and Homeostasis of the Extracellular Matrix: Implications for Fibrotic Diseases and Cancer
,”
Dis. Model. Mech.
,
4
(
2
), pp.
165
178
.10.1242/dmm.004077
5.
Bonnans
,
C.
,
Chou
,
J.
, and
Werb
,
Z.
,
2014
, “
Remodelling the Extracellular Matrix in Development and Disease
,”
Nat. Rev. Mol. Cell Biol.
,
15
(
12
), pp.
786
801
.10.1038/nrm3904
6.
Xie
,
J.
,
Bao
,
M.
,
Bruekers
,
S. M. C.
, and
Huck
,
W. T. S.
,
2017
, “
Collagen Gels With Different Fibrillar Microarchitectures Elicit Different Cellular Responses
,”
ACS Appl. Mater. Interfaces
,
9
(
23
), pp.
19630
19637
.10.1021/acsami.7b03883
7.
Hall
,
M. S.
,
Alisafaei
,
F.
,
Ban
,
E.
,
Feng
,
X.
,
Hui
,
C.-Y.
,
Shenoy
,
V. B.
, and
Wu
,
M.
,
2016
, “
Fibrous Nonlinear Elasticity Enables Positive Mechanical Feedback Between Cells and ECMs
,”
Proc. Natl. Acad. Sci. U. S. A.
,
113
(
49
), pp.
14043
14048
.10.1073/pnas.1613058113
8.
Grinnell
,
F.
, and
Petroll
,
W. M.
,
2010
, “
Cell Motility and Mechanics in Three-Dimensional Collagen Matrices
,”
Annu. Rev. Cell Dev. Biol.
,
26
(
1
), pp.
335
361
.10.1146/annurev.cellbio.042308.113318
9.
Chiquet
,
M.
,
Gelman
,
L.
,
Lutz
,
R.
, and
Maier
,
S.
,
2009
, “
From Mechanotransduction to Extracellular Matrix Gene Expression in Fibroblasts
,”
Biochim. Biophys. Acta Mol. Cell Res.
,
1793
(
5
), pp.
911
920
.10.1016/j.bbamcr.2009.01.012
10.
Mammoto
,
A.
,
Mammoto
,
T.
, and
Ingber
,
D. E.
,
2012
, “
Mechanosensitive Mechanisms in Transcriptional Regulation
,”
J. Cell Sci.
,
125
(
13
), pp.
3061
3073
.10.1242/jcs.093005
11.
Zemel
,
A.
,
2015
, “
Active Mechanical Coupling Between the Nucleus, Cytoskeleton and the Extracellular Matrix, and the Implications for Perinuclear Actomyosin Organization
,”
Soft Matter
,
11
(
12
), pp.
2353
2363
.10.1039/C4SM02425G
12.
Bates
,
R. C.
,
Lincz
,
L. F.
, and
Burns
,
G. F.
,
1995
, “
Involvement of Integrins in Cell Survival
,”
Cancer Metastasis Rev.
,
14
(
3
), pp.
191
203
.10.1007/BF00690291
13.
Zhu
,
Y. K.
,
Umino
,
T.
,
Liu
,
X. D.
,
Wang
,
H. J.
,
Romberger
,
D. J.
,
Spurzem
,
J. R.
, and
Rennard
,
S. I.
,
2001
, “
Contraction of Fibroblast-Containing Collagen Gels: Initial Collagen Concentration Regulates the Degree of Contraction and Cell Survival
,”
In Vitro Cell. Dev. Biol. Anim.
,
37
(
1
), pp.
10
16
.10.1290/1071-2690(2001)037<0010:COFCCG>2.0.CO;2
14.
Sukharev
,
S.
, and
Sachs
,
F.
,
2012
, “
Molecular Force Transduction by Ion Channels—Diversity and Unifying Principles
,”
J. Cell Sci.
,
125
(
13
), pp.
3075
3083
.10.1242/jcs.092353
15.
Schwartz
,
M. A.
,
Schaller
,
M. D.
, and
Ginsberg
,
M. H.
,
1995
, “
Integrins: Emerging Paradigms of Signal Transduction
,”
Annu. Rev. Cell Dev. Biol.
,
11
(
1
), pp.
549
599
.10.1146/annurev.cb.11.110195.003001
16.
Brown
,
R. A.
,
Prajapati
,
R.
,
McGrouther
,
D. A.
,
Yannas
,
I. V.
, and
Eastwood
,
M.
,
1998
, “
Tensional Homeostasis in Dermal Fibroblasts: Mechanical Responses to Mechanical Loading in Three-Dimensional Substrates
,”
J. Cell. Physiol.
,
175
(
3
), pp.
323
332
.10.1002/(SICI)1097-4652(199806)175:3<323::AID-JCP10>3.0.CO;2-6
17.
Ezra
,
D. G.
,
Ellis
,
J. S.
,
Beaconsfield
,
M.
,
Collin
,
R.
, and
Bailly
,
M.
,
2010
, “
Changes in Fibroblast Mechanostat Set Point and Mechanosensitivity: An Adaptive Response to Mechanical Stress in Floppy Eyelid Syndrome
,”
Invest. Ophthalmol. Visual Sci.
,
51
(
8
), pp.
3853
3863
.10.1167/iovs.09-4724
18.
Simon
,
D. D.
,
Niklason
,
L. E.
, and
Humphrey
,
J. D.
,
2014
, “
Tissue Transglutaminase, Not Lysyl Oxidase, Dominates Early Calcium-Dependent Remodeling of Fibroblast-Populated Collagen Lattices
,”
Cells Tissues Organs
,
200
(
2
), pp.
104
117
.10.1159/000381015
19.
Simon
,
D. D.
,
Horgan
,
C. O.
, and
Humphrey
,
J. D.
,
2012
, “
Mechanical Restrictions on Biological Responses by Adherent Cells Within Collagen Gels
,”
J. Mech. Behav. Biomed. Mater.
,
14
, pp.
216
226
.10.1016/j.jmbbm.2012.05.009
20.
Kolodney
,
M. S.
, and
Wysolmerski
,
R. B.
,
1992
, “
Isometric Contraction by Fibroblasts and Endothelial Cells in Tissue Culture: A Quantitative Study
,”
J. Cell Biol.
,
117
(
1
), pp.
73
82
.10.1083/jcb.117.1.73
21.
Eastwood
,
M.
,
McGrouther
,
D. A.
, and
Brown
,
R. A.
,
1994
, “
A Culture Force Monitor for Measurement of Contraction Forces Generated in Human Dermal Fibroblast Cultures: Evidence for Cell-Matrix Mechanical Signalling
,”
BBA Gen. Subj.
,
1201
(
2
), pp.
186
192
.10.1016/0304-4165(94)90040-X
22.
Marenzana
,
M.
,
Wilson-Jones
,
N.
,
Mudera
,
V.
, and
Brown
,
R. A.
,
2006
, “
The Origins and Regulation of Tissue Tension: Identification of Collagen Tension-Fixation Process In Vitro
,”
Exp. Cell Res.
,
312
(
4
), pp.
423
433
.10.1016/j.yexcr.2005.11.005
23.
Campbell
,
B. H.
,
Clark
,
W. W.
, and
Wang
,
J. H. C.
,
2003
, “
A Multi-Station Culture Force Monitor System to Study Cellular Contractility
,”
J. Biomech.
,
36
(
1
), pp.
137
140
.10.1016/S0021-9290(02)00325-1
24.
Brown
,
R. A.
,
Sethi
,
K. K.
,
Gwanmesia
,
I.
,
Raemdonck
,
D.
,
Eastwood
,
M.
, and
Mudera
,
V.
,
2002
, “
Enhanced Fibroblast Contraction of 3D Collagen Lattices and Integrin Expression by TGF-Β1 and -Β3: Mechanoregulatory Growth Factors?
,”
Exp. Cell Res.
,
274
(
2
), pp.
310
322
.10.1006/excr.2002.5471
25.
Hu
,
J.-J.
,
Humphrey
,
J. D.
, and
Yeh
,
A. T.
,
2009
, “
Characterization of Engineered Tissue Development Under Biaxial Stretch Using Nonlinear Optical Microscopy
,”
Tissue Eng. Part A
,
15
(
7
), pp.
1553
1564
.10.1089/ten.tea.2008.0287
26.
Thomopoulos
,
S.
,
Fomovsky
,
G. M.
, and
Holmes
,
J. W.
,
2005
, “
The Development of Structural and Mechanical Anisotropy in Fibroblast Populated Collagen Gels
,”
ASME J. Biomech. Eng.
,
127
(
5
), pp.
742
750
.10.1115/1.1992525
27.
Thomopoulos
,
S.
,
Fomovsky
,
G. M.
,
Chandran
,
P. L.
, and
Holmes
,
J. W.
,
2007
, “
Collagen Fiber Alignment Does Not Explain Mechanical Anisotropy in Fibroblast Populated Collagen Gels
,”
ASME J. Biomech. Eng.
,
129
(
5
), pp.
642
650
.10.1115/1.2768104
28.
Lee
,
P. Y.
,
Liu
,
Y. C.
,
Wang
,
M. X.
, and
Hu
,
J. J.
,
2018
, “
Fibroblast-Seeded Collagen Gels in Response to Dynamic Equibiaxial Mechanical Stimuli: A Biomechanical Study
,”
J. Biomech.
,
78
, pp.
134
142
.10.1016/j.jbiomech.2018.07.030
29.
Latorre
,
M.
, and
Humphrey
,
J. D.
,
2019
, “
Mechanobiological Stability of Biological Soft Tissues
,”
J. Mech. Phys. Solids
,
125
, pp.
298
325
.10.1016/j.jmps.2018.12.013
30.
Braeu
,
F. A.
,
Seitz
,
A.
,
Aydin
,
R. C.
, and
Cyron
,
C. J.
,
2017
, “
Homogenized Constrained Mixture Models for Anisotropic Volumetric Growth and Remodeling
,”
Biomech. Model. Mechanobiol.
,
16
(
3
), pp.
889
906
.10.1007/s10237-016-0859-1
31.
Humphrey
,
J. D.
,
Wells
,
P. B.
,
Baek
,
S.
,
Hu
,
J.-J.
,
McLeroy
,
K.
, and
Yeh
,
A. T.
,
2008
, “
A Theoretically-Motivated Biaxial Tissue Culture System With Intravital Microscopy
,”
Biomech. Model. Mechanobiol.
,
7
(
4
), pp.
323
334
.10.1007/s10237-007-0099-5
32.
Aydin
,
R. C.
,
Brandstaeter
,
S.
,
Braeu
,
F. A.
,
Steigenberger
,
M.
,
Marcus
,
R. P.
,
Nikolaou
,
K.
,
Notohamiprodjo
,
M.
, and
Cyron
,
C. J.
,
2017
, “
Experimental Characterization of the Biaxial Mechanical Properties of Porcine Gastric Tissue
,”
J. Mech. Behav. Biomed. Mater.
,
74
, pp.
499
506
.10.1016/j.jmbbm.2017.07.028
33.
Hu
,
J. J.
,
Liu
,
Y. C.
,
Chen
,
G. W.
,
Wang
,
M. X.
, and
Lee
,
P. Y.
,
2013
, “
Development of Fibroblast-Seeded Collagen Gels Under Planar Biaxial Mechanical Constraints: A Biomechanical Study
,”
Biomech. Model. Mechanobiol.
,
12
(
5
), pp.
849
868
.10.1007/s10237-012-0448-x
34.
Knezevic
,
V.
,
Sim
,
A. J.
,
Borg
,
T. K.
, and
Holmes
,
J. W.
,
2002
, “
Isotonic Biaxial Loading of Fibroblast-Populated Collagen Gels: A Versatile, Low-Cost System for the Study of Mechanobiology
,”
Biomech. Model. Mechanobiol.
,
1
(
1
), pp.
59
67
.10.1007/s10237-002-0005-0
35.
Eastwood
,
M.
,
Mudera
,
V. C.
,
McGrouther
,
D. A.
, and
Brown
,
R. A.
,
1998
, “
Effect of Precise Mechanical Loading on Fibroblast Populated Collagen Lattices: Morphological Changes
,”
Cell Motil. Cytoskeleton
,
40
(
1
), pp.
13
21
.10.1002/(SICI)1097-0169(1998)40:1<13::AID-CM2>3.0.CO;2-G
36.
Cyron
,
C. J.
,
Aydin
,
R. C.
, and
Humphrey
,
J. D.
,
2016
, “
A Homogenized Constrained Mixture (and Mechanical Analog) Model for Growth and Remodeling of Soft Tissue
,”
Biomech. Model. Mechanobiol.
,
15
(
6
), pp.
1389
1403
.10.1007/s10237-016-0770-9
37.
Cyron
,
C. J.
, and
Aydin
,
R. C.
,
2017
, “
Mechanobiological Free Energy: A Variational Approach to Tensional Homeostasis in Tissue Equivalents
,”
Z. Angew. Math. Mech.
,
97
(
9
), pp.
1011
1019
.10.1002/zamm.201600126
You do not currently have access to this content.