Abstract

Using finite element (FE) models of intact and implanted hemipelvises, the study aimed to investigate the influences of musculoskeletal loading and implant–bone interface conditions on preclinical analysis of an uncemented acetabular component after total hip arthroplasty (THA). A new musculoskeletal loading dataset, corresponding to daily activities of sitting up–down, stairs up–down and normal walking, for a pelvic bone was generated based on previously validated Gait2392 model. Three implant–bone interface conditions, fully bonded and debonded having two rim press-fits (1 mm and 2 mm), were analyzed. High tensile (2000–2415 μϵ) and compressive strains (900–1035 μϵ) were predicted for 2 mm press-fit, which might evoke microdamage in pelvic cortex. Strain shielding in periprosthetic cancellous bone was higher for bonded condition during sitting up activity, compared to other combinations of interface and loading conditions. Only the nodes around acetabular rim (less than 6%) were susceptible to interfacial debonding. Although maximum micromotion increased with increase in press-fit, postoperatively for all load cases, these were within a favorable range (52–143 μm) for bone ingrowth. Micromotions reduced (39–105 μm) with bone remodeling, indicating lesser chances of implant migration. Bone apposition was predominant around acetabular rim, compared to dome, for all interface conditions. Periprosthetic bone resorption of 10–20% and bone apposition of 10–15% were predicted for bonded condition. Whereas for press-fit (1 mm and 2 mm), predominant bone apposition of 200–300% was observed. This study highlights the importance of variations in loading and interface conditions on in silico evaluations of an uncemented acetabular component.

References

1.
Taylor
,
M.
,
Bryan
,
R.
, and
Galloway
,
F.
,
2013
, “
Accounting for Patient Variability in Finite Element Analysis of the Intact and Implanted Hip and Knee: A Review
,”
Int. J. Numer. Methods Biomed. Eng.
,
29
(
2
), pp.
273
292
.10.1002/cnm.2530
2.
Mukherjee
,
K.
, and
Gupta
,
S.
,
2016
, “
The Effects of Musculoskeletal Loading Regimes on Numerical Evaluations of Acetabular Component
,”
Proc. Inst. Mech. Eng., Part H
,
230
(
10
), pp.
918
929
.10.1177/0954411916661368
3.
O'Rourke
,
D.
,
Al‐Dirini
,
R. M.
, and
Taylor
,
M.
,
2018
, “
Primary Stability of a Cementless Acetabular Cup in a Cohort of Patient-Specific Finite Element Models
,”
J. Orthop. Res.
,
36
(
3
), pp.
1012
1023
.10.1002/jor.23709
4.
Vogel
,
D.
,
Klimek
,
M.
,
Saemann
,
M.
, and
Bader
,
R.
,
2020
, “
Influence of the Acetabular Cup Material on the Shell Deformation and Strain Distribution in the Adjacent Bone—A Finite Element Analysis
,”
Materials
,
13
(
6
), p.
1372
.10.3390/ma13061372
5.
O'Rourke
,
D.
, and
Taylor
,
M.
,
2020
, “
Patient and Surgical Variability in the Primary Stability of Cementless Acetabular Cups: A Finite Element Study
,”
J. Orthop. Res.
,
38
(
7
), pp.
1515
1522
.10.1002/jor.24636
6.
Mathai
,
B.
, and
Gupta
,
S.
,
2020
, “
The Influence of Loading Configurations on Numerical Evaluation of Failure Mechanisms in an Uncemented Femoral Prosthesis
,”
Int. J. Numer. Methods Biomed. Eng.
,
36
(
8
), p.
e3353
.10.1002/cnm.3353
7.
Mathai
,
B.
, and
Gupta
,
S.
,
2022
, “
Bone Ingrowth Around an Uncemented Femoral Implant Using Mechanoregulatory Algorithm: A Multiscale Finite Element Analysis
,”
ASME J. Biomech. Eng.
,
144
(
2
), p.
021004
.10.1115/1.4052227
8.
Taylor
,
M.
, and
Prendergast
,
P. J.
,
2015
, “
Four Decades of Finite Element Analysis of Orthopaedic Devices: Where Are We Now and What Are the Opportunities?
,”
J. Biomech.
,
48
(
5
), pp.
767
778
.10.1016/j.jbiomech.2014.12.019
9.
Manley
,
M. T.
,
Ong
,
K. L.
, and
Kurtz
,
S. M.
,
2006
, “
The Potential for Bone Loss in Acetabular Structures Following THA
,”
Clin. Orthop. Relat. Res.
,
453
, pp.
246
253
.10.1097/01.blo.0000238855.54239.fd
10.
Ong
,
K. L.
,
Lehman
,
J.
,
Notz
,
W. I.
,
Santner
,
T. J.
, and
Bartel
,
D. L.
,
2006
, “
Acetabular Cup Geometry and Bone-Implant Interface Have More Influence on Initial Periprosthetic Joint Space Than Joint Loading and Surgical Cup Insertion
,”
ASME J. Biomech. Eng.
,
128
(
2
), pp.
169
175
.10.1115/1.2165701
11.
Udofia
,
I.
,
Liu
,
F.
,
Roberts
,
P.
, and
Grigoris
,
P.
,
2007
, “
The Initial Stability and Contact Mechanics of a Press-Fit Resurfacing Arthroplasty of the Hip
,”
J. Bone Jt. Surg., Br. Vol.
,
89
(
4
), pp.
549
–5
56
.10.1302/0301-620X.89B4.18055
12.
Latif
,
A. M.
,
Mehats
,
A.
,
Elcocks
,
M.
,
Rushton
,
N.
,
Field
,
R. E.
, and
Jones
,
E.
,
2008
, “
Pre-Clinical Studies to Validate the MITCH PCR Cup: A Flexible and Anatomically Shaped Acetabular Component With Novel Bearing Characteristics
,”
J. Mater. Sci.: Mater. Med.
,
19
(
4
), pp.
1729
1736
.10.1007/s10856-007-3256-6
13.
Ghosh
,
R.
,
Mukherjee
,
K.
, and
Gupta
,
S.
,
2013
, “
Bone Remodeling Around Uncemented Metallic and Ceramic Acetabular Components
,”
Proc. Inst. Mech. Eng., Part H
,
227
(
5
), pp.
490
502
.10.1177/0954411913478703
14.
Ghosh
,
R.
, and
Gupta
,
S.
,
2014
, “
Bone Remodeling Around Cementless Composite Acetabular Components: The Effects of Implant Geometry and Implant-Bone Interfacial Conditions
,”
J. Mech. Behav. Biomed. Mater.
,
32
, pp.
257
269
.10.1016/j.jmbbm.2014.01.010
15.
Chatterjee
,
S.
,
Kobylinski
,
S.
, and
Basu
,
B.
,
2018
, “
Finite Element Analysis to Probe the Influence of Acetabular Shell Design, Liner Material, and Subject Parameters on Biomechanical Response in Periprosthetic Bone
,”
ASME J. Biomech. Eng.
,
140
(
10
), p.
101014
.10.1115/1.4040249
16.
Zaharie
,
D. T.
, and
Phillips
,
A.
,
2018
, “
Pelvic Construct Prediction of Trabecular and Cortical Bone Structural Architecture
,”
ASME J. Biomech. Eng.
,
140
(
9
), p.
091001
.10.1115/1.4039894
17.
Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR)
, 2021, “
Hip, Knee and Shoulder Arthroplasty: 2021 Annual Report
,” AOANJRR, Adelaide, Australia.
18.
Crawford
,
R. W.
, and
Murray
,
D. W.
,
1997
, “
Total Hip Replacement: Indications for Surgery and Risk Factors for Failure
,”
Ann. Rheum. Dis.
,
56
(
8
), pp.
455
457
.10.1136/ard.56.8.455
19.
Kärrholm
,
J.
,
Rogmark
,
C.
,
Naucler
,
E.
,
Nåtman
,
J.
,
Vinblad
,
J.
,
Mohaddes
,
M.
, and
Rolfson
,
O.
,
2021
, “
Swedish Hip Arthroplasty Register Annual Report 2019
,” Swedish Hip Arthroplasty Register, Gothenburg, Swedenhttps://registercentrum.blob.core.windows.net/shpr/r/VGR_Annualreport_SHAR_2019_EN_Digital-pages_FINAL-ryxaMBUWZ_.pdf.
20.
Ben-Shlomo
,
Y.
,
Blom
,
A.
,
Boulton
,
C.
,
Brittain
,
R.
,
Clark
,
E.
,
Dawson-Bowling
,
S.
,
Deere
,
K.
, et al.,
2021
, “
The National Joint Registry 18th Annual Report 2021
,”
National Joint Registry
,
London, UK
.https://pubmed.ncbi.nlm.nih.gov/35072993/
21.
Huiskes
,
R.
,
Weinans
,
H.
, and
van Rietbergen
,
B.
,
1992
, “
The Relationship Between Stress Shielding and Bone Resorption Around Total Hip Stems and the Effects of Flexible Materials
,”
Clin. Orthop. Relat. Res.
,
274
, pp.
124
–1
34
.10.1097/00003086-199201000-00014
22.
Spears
,
I. R.
,
Pfleiderer
,
M.
,
Schneider
,
E.
,
Hille
,
E.
,
Bergmann
,
G.
, and
Morlock
,
M. M.
,
2000
, “
Interfacial Conditions Between a Press-Fit Acetabular Cup and Bone During Daily Activities: Implications for Achieving Bone in-Growth
,”
J. Biomech.
,
33
(
11
), pp.
1471
1477
.10.1016/S0021-9290(00)00096-8
23.
Spears
,
I. R.
,
Pfleiderer
,
M.
,
Schneider
,
E.
,
Hille
,
E.
, and
Morlock
,
M. M.
,
2001
, “
The Effect of Interfacial Parameters on Cup-Bone Relative Micromotions: A Finite Element Investigation
,”
J. Biomech.
,
34
(
1
), pp.
113
120
.10.1016/S0021-9290(00)00112-3
24.
Janssen
,
D.
,
Zwartele
,
R. E.
,
Doets
,
H. C.
, and
Verdonschot
,
N.
,
2010
, “
Computational Assessment of Press-Fit Acetabular Implant Fixation: The Effect of Implant Design, Interference Fit, Bone Quality, and Frictional Properties
,”
Proc. Inst. Mech. Eng., Part H
,
224
(
1
), pp.
65
75
.10.1243/09544119JEIM645
25.
Ma
,
W.
,
Zhang
,
X.
,
Wang
,
J.
,
Zhang
,
Q.
,
Chen
,
W.
, and
Zhang
,
Y.
,
2013
, “
Optimized Design for a Novel Acetabular Component With Three Wings. A Study of Finite Element Analysis
,”
J. Surg. Res.
,
179
(
1
), pp.
78
86
.10.1016/j.jss.2012.08.036
26.
Kassi
,
J. P.
,
Heller
,
M. O.
,
Stoeckle
,
U.
,
Perka
,
C.
, and
Duda
,
G. N.
,
2005
, “
Stair Climbing is More Critical Than Walking in Preclinical Assessment of Primary Stability in Cementless THA In Vitro
,”
J. Biomech.
,
38
(
5
), pp.
1143
1154
.10.1016/j.jbiomech.2004.05.023
27.
Cristofolini
,
L.
,
Viceconti
,
M.
,
Toni
,
A.
, and
Giunti
,
A.
,
1995
, “
Influence of Thigh Muscles on the Axial Strains in a Proximal Femur During Early Stance in Gait
,”
J. Biomech.
,
28
(
5
), pp.
617
624
.10.1016/0021-9290(94)00106-E
28.
Stolk
,
J.
,
Verdonschot
,
N.
, and
Huiskes
,
R.
,
2001
, “
Hip-Joint Abductor-Muscle Forces Adequately Represent In Vivo Loading of a Cemented Total Hip Reconstruction
,”
J. Biomech.
,
34
(
7
), pp.
917
926
.10.1016/S0021-9290(00)00225-6
29.
van der Ploeg
,
B.
,
Tarala
,
M.
,
Homminga
,
J.
,
Janssen
,
D.
,
Buma
,
P.
, and
Verdonschot
,
N.
,
2012
, “
Toward a More Realistic Prediction of Periprosthetic Micromotions
,”
J. Orthop. Res.
,
30
(
7
), pp.
1147
1154
.10.1002/jor.22041
30.
Mathai
,
B.
, and
Gupta
,
S.
,
2019
, “
Numerical Predictions of Hip Joint and Muscle Forces During Daily Activities: A Comparison of Musculoskeletal Models
,”
Proc. Instn. Mech. Eng., Part H
,
233
(
6
), pp.
636
647
.10.1177/0954411919840524
31.
Ghosh
,
R.
,
Pal
,
B.
,
Ghosh
,
D.
, and
Gupta
,
S.
,
2015
, “
Finite Element Analysis of a Hemipelvis: The Effect of Inclusion of Cartilage Layer on Acetabular Stresses and Strain
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
7
), pp.
697
710
.10.1080/10255842.2013.843674
32.
Taddei
,
F.
,
Pancanti
,
A.
, and
Viceconti
,
M.
,
2004
, “
An Improved Method for the Automatic Mapping of Computed Tomography Numbers Onto Finite Element Models
,”
Med. Eng. Phys.
,
26
(
1
), pp.
61
69
.10.1016/S1350-4533(03)00138-3
33.
Dalstra
,
M.
,
Huiskes
,
R.
,
Odgaard
,
A.
, and
van Erning
,
L.
,
1993
, “
Mechanical and Textural Properties of Pelvic Trabecular Bone
,”
J. Biomech.
,
26
(
4–5
), pp.
523
535
.10.1016/0021-9290(93)90014-6
34.
Kempson
,
G.
,
1980
, “
The Mechanical Properties of Articular Cartilage
,”
The Joint and Synovial Fluid
,
L.
Sokoloff
, ed.,
Academic Press
,
New York
, pp.
385
409
.
35.
Unsworth
,
A.
,
Dowson
,
D.
, and
Wright
,
V.
,
1975
, “
The Frictional Behaviour of Human Synovial Joints—Part I: Natural Joints
,”
ASME J. Lubr. Tech.
,
97
(
3
), pp.
369
376
.10.1115/1.3452605
36.
Leung
,
A. S. O.
,
Gordon
,
L. M.
,
Skrinskas
,
T.
,
Szwedowski
,
T.
, and
Whyne
,
C. M.
,
2009
, “
Effects of Bone Density Alterations on Strain Patterns in the Pelvis: Application of a Finite Element Model
,”
Proc. Inst. Mech. Eng., Part H
,
223
(
8
), pp.
965
979
.10.1243/09544119JEIM618
37.
Ghosh
,
R.
,
Gupta
,
S.
,
Dickinson
,
A.
, and
Browne
,
M.
,
2013
, “
Experimental Validation of Numerically Predicted Strain and Micromotion in Intact and Implanted Composite Hemipelvises
,”
Proc. Inst. Mech. Eng., Part H
,
227
(
2
), pp.
162
174
.10.1177/0954411912461238
38.
Shirazi-Adl
,
A.
,
Dammak
,
M.
, and
Paiement
,
G.
,
1993
, “
Experimental Determination of Friction Characteristics at the Trabecular Bone/Porous Coated Metal Interface in Cementless Implants
,”
J. Biomed. Mat. Res.
,
27
(
2
), pp.
167
175
.10.1002/jbm.820270205
39.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
Opensim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.10.1109/TBME.2007.901024
40.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
,
2001
, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
,
34
(
7
), pp.
859
871
.10.1016/S0021-9290(01)00040-9
41.
Heller
,
M. O.
,
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Dürselen
,
L.
,
Pohl
,
M.
,
Claes
,
L.
,
Haas
,
N. P.
, and
Duda
,
G. N.
,
2001
, “
Musculo-Skeletal Loading Conditions at the Hip During Walking and Stair Climbing
,”
J. Biomech.
,
34
(
7
), pp.
883
893
.10.1016/S0021-9290(01)00039-2
42.
Dalstra
,
M.
, and
Huiskes
,
R.
,
1995
, “
Load Transfer Across the Pelvis Bone
,”
J. Biomech.
,
28
(
6
), pp.
715
724
.10.1016/0021-9290(94)00125-N
43.
Dostal
,
W. F.
, and
Andrews
,
J. G.
,
1981
, “
A Three-Dimensional Biomechanical Model of Hip Musculature
,”
J. Biomech.
,
14
(
11
), pp.
803
812
.10.1016/0021-9290(81)90036-1
44.
Schileo
,
E.
,
Taddei
,
F.
,
Cristofolini
,
L.
, and
Viceconti
,
M.
,
2008
, “
Subject-Specific Finite Element Models Implementing a Maximum Principal Strain Criterion Are Able to Estimate Failure Risk and Fracture Location on Human Femurs Tested In Vitro
,”
J. Biomech.
,
41
(
2
), pp.
356
367
.10.1016/j.jbiomech.2007.09.009
45.
Ali
,
A. A.
,
Cristofolini
,
L.
,
Schileo
,
E.
,
Hu
,
H.
,
Taddei
,
F.
,
Kim
,
R. H.
,
Rullkoetter
,
P. J.
, and
Laz
,
P. J.
,
2014
, “
Specimen-Specific Modelling of Hip Fracture Pattern and Repair
,”
J. Biomech.
,
47
(
2
), pp.
536
543
.10.1016/j.jbiomech.2013.10.033
46.
Wright
,
J. M.
,
Pellicci
,
P. M.
,
Salvati
,
E. A.
,
Ghelman
,
B.
,
Roberts
,
M. M.
, and
Koh
,
J. L.
,
2001
, “
Bone Density Adjacent to Press-Fit Acetabular Components: A Prospective Analysis With Quantitative Computer Tomography
,”
J. Bone Jt. Surg., Am. Vol.
,
83
(
4
), pp.
529
536
.10.2106/00004623-200104000-00007
47.
Mulier
,
M.
,
Jaecques
,
S. V. N.
,
Raaijmaakers
,
M.
,
Nijs
,
J.
,
van der Perre
,
G.
, and
Jonkers
,
I.
,
2011
, “
Early Periprosthetic Bone Remodeling Around Cemented and Uncemented Custom-Made Femoral Components and Their Uncemented Acetabular Cups
,”
Arch. Orthop. Trauma Surg.
,
131
(
7
), pp.
941
948
.10.1007/s00402-010-1239-4
48.
Stocks
,
G. W.
,
Freeman
,
M. A.
, and
Evans
,
S. J.
,
1995
, “
Acetabular Cup Migration. Prediction of Aseptic Loosening
,”
J. Bone Jt. Surg., Br. Vol.
,
77
(
6
), pp.
853
861
.10.1302/0301-620X.77B6.7593094
49.
Pilliar
,
R. M.
,
Lee
,
J. M.
, and
Maniatopoulos
,
C.
,
1986
, “
Observations on the Effect of Movement on Bone Ingrowth Into Porous-Surfaced Implants
,”
Clin. Orthop. Relat. Res.
,
208
, pp.
108
–1
13
.10.1097/00003086-198607000-00023
50.
Jasty
,
M.
,
Bragdon
,
C.
,
Burke
,
D.
,
O'Connor
,
D.
,
Lowenstein
,
J.
, and
Harris
,
W. H.
,
1997
, “
In Vivo Skeletal Responses to Porous-Surfaced Implants Subjected to Small Induced Motions
,”
J. Bone Jt. Surg., Am. Vol.
,
79
(
5
), pp.
707
–7
14
.10.2106/00004623-199705000-00010
51.
Liu
,
X.
, and
Niebur
,
G. L.
,
2008
, “
Bone Ingrowth Into a Porous-Coated Implant Predicted by a Mechano-Regulatory Tissue Differentiation Algorithm
,”
Biomech. Model. Mechanobiol.
,
7
(
4
), pp.
335
344
.10.1007/s10237-007-0100-3
52.
Yeh
,
O. C.
, and
Keaveny
,
T. M.
,
2001
, “
Relative Roles of Microdamage and Microfracture in the Mechanical Behavior of Trabecular Bone
,”
J. Orthop. Res.
,
19
(
6
), pp.
1001
1007
.10.1016/S0736-0266(01)00053-5
53.
Frost
,
H. M.
,
2003
, “
Bone's Mechanostat: A 2003 Update
,”
Anat. Rec., Part A
,
275
(
2
), pp.
1081
1101
.10.1002/ar.a.10119
54.
Bayraktar
,
H. H.
,
Morgan
,
E. F.
,
Niebur
,
G. L.
,
Morris
,
G. E.
,
Wong
,
E. K.
, and
Keaveny
,
T. M.
,
2004
, “
Comparison of the Elastic and Yield Properties of Human Femoral Trabecular and Cortical Bone Tissue
,”
J. Biomech.
,
37
(
1
), pp.
27
35
.10.1016/S0021-9290(03)00257-4
55.
Morgan
,
E. F.
, and
Keaveny
,
T. M.
,
2001
, “
Dependence of Yield Strain of Human Trabecular Bone on Anatomic site
,”
J. Biomech.
,
34
(
5
), pp.
569
577
.10.1016/S0021-9290(01)00011-2
56.
Verhulp
,
E.
,
van Rietbergen
,
B.
,
Müller
,
R.
, and
Huiskes
,
R.
,
2008
, “
Indirect Determination of Trabecular Bone Effective Tissue Failure Properties Using Micro-Finite Element Simulations
,”
J. Biomech.
,
41
(
7
), pp.
1479
1485
.10.1016/j.jbiomech.2008.02.032
57.
Hoffman
,
O.
,
1967
, “
The Brittle Strength of Orthotropic Materials
,”
J. Compos. Mater.
,
1
(
2
), pp.
200
206
.10.1177/002199836700100210
58.
Huiskes
,
R.
, and
Rietbergen
,
B.
,
1995
, “
Preclinical Testing of Total Hip Stems: The Effects of Coating Placement
,”
Clin. Orthop. Relat. Res.
,
319
, pp.
64
76
.10.1097/00003086-199510000-00007
59.
Kaplan
,
S. J.
,
Hayes
,
W. C.
,
Stone
,
J. L.
, and
Beaupré
,
G. S.
,
1985
, “
Tensile Strength of Bovine Trabecular Bone
,”
J. Biomech.
,
18
(
9
), pp.
723
727
.10.1016/0021-9290(85)90027-2
60.
Weinans
,
H.
,
Huiskes
,
R.
,
Van Rietbergen
,
B.
,
Sumner
,
D. R.
,
Turner
,
T. M.
, and
Galante
,
J. O.
,
1993
, “
Adaptive Bone Remodeling Around Bonded Noncemented Total Hip Arthroplasty: A Comparison Between Animal Experiments and Computer Simulation
,”
J. Orthop. Res.
,
11
(
4
), pp.
500
513
.10.1002/jor.1100110405
61.
Martin
,
R. B.
,
1984
, “
Porosity and Specific Surface of Bone
,”
Crit. Rev. Biomed. Eng.
,
10
(
3
), pp.
179
222
.https://pubmed.ncbi.nlm.nih.gov/6368124/
62.
Wilkinson
,
J. M.
,
Peel
,
N. F.
,
Elson
,
R. A.
,
Stockley
,
I.
, and
Eastell
,
R.
,
2001
, “
Measuring Bone Mineral Density of the Pelvis and Proximal Femur After Total Hip Arthroplasty
,”
J. Bone Jt. Surg., Br.
Vol.,
83
(
2
), pp.
283
288
.10.1302/0301-620X.83B2.0830283
63.
Ries
,
M. D.
, and
Harbaugh
,
M.
,
1997
, “
Acetabular Strains Produced by Oversized Press Fit Cups
,”
Clin. Orthop. Relat. Res.
,
334
, pp.
276
281
.10.1097/00003086-199701000-00036
64.
Schmidt
,
R.
,
Muller
,
L.
,
Kress
,
A.
,
Hirschfelder
,
H.
,
Aplas
,
A.
, and
Pitto
,
R. P.
,
2002
, “
A Computed Tomography Assessment of Femoral and Acetabular Bone Changes After Total Hip Arthroplasty
,”
Int. Ortho
p.,
26
(
5
), pp.
299
302
.10.1007/s00264-002-0377-x
65.
Trisi
,
P.
,
Perfetti
,
G.
,
Baldoni
,
E.
,
Berardi
,
D.
,
Colagiovanni
,
M.
, and
Scogna
,
G.
,
2009
, “
Implant Micromotion is Related to Peak Insertion Torque and Bone Density
,”
Clin. Oral Implants Res.
,
20
(
5
), pp.
467
471
.10.1111/j.1600-0501.2008.01679.x
66.
Levenston
,
M. E.
,
Beaupre
,
G. S.
,
Schurman
,
D. J.
, and
Carter
,
D. R.
,
1993
, “
Computer Simulations of Stress-Related Bone Remodeling Around Noncemented Acetabular Components
,”
J. Arthroplasty
,
8
(
6
), pp.
595
605
.10.1016/0883-5403(93)90006-P
67.
Meneghini
,
R. M.
,
Ford
,
K. S.
,
McCollough
,
C. H.
,
Hanssen
,
A. D.
, and
Lewallen
,
D. G.
,
2010
, “
Bone Remodeling Around Porous Metal Cementless Acetabular Component
,”
J. Arthroplasty
,
25
(
5
), pp.
741
747
.10.1016/j.arth.2009.04.025
68.
Widmer
,
K. H.
,
Zurfluh
,
B.
, and
Morscher
,
E. W.
,
2002
, “
Load Transfer and Fixation Mode of Press-Fit Acetabular Sockets
,”
J. Arthroplasty
,
17
(
7
), pp.
926
935
.10.1054/arth.2002.34526
You do not currently have access to this content.