Abstract

The analytical sensitivity analysis, i.e., the analytical first-order partial derivatives of dynamical equations, is one key to improving descent-based optimization methods for motion planning and control of robots. This paper proposes an efficient algorithm that recursively evaluates the analytic gradient of the dynamical equations of a multibody system. The theory of projective geometric algebra (PGA) is used to generate the algorithm. It provides a systemic and geometrically intuitive interpretation for the multibody system dynamics, and the resulting algorithm is highly efficient, with concise formula. The algorithm is first applied to the open-chain system and extended for the cases when kinematic loops are contained. The runtime varying with respect to the degree-of-freedom (DOF) of the system is analyzed. The results are compared with that obtained from the algorithm based on spatial vector algebra (SVA) using open-source matlab codes. A 2DOF serial robot, a 3DOF robot with a kinematic loop and the PUMA560 robot are used for the validation of the minimum-effort motion planning, and it is verified that the proposed algorithm improves the efficiency.

References

1.
Park
,
F.
,
Kim
,
B.
,
Jang
,
C.
, and
Hong
,
J.
,
2018
, “
Geometric Algorithms for Robot Dynamics: A Tutorial Review
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010803
.10.1115/1.4039078
2.
Lee
,
S.-H.
,
Kim
,
J.
,
Park
,
F.
,
Kim
,
M.
, and
Bobrow
,
J.
,
2005
, “
Newton-Type Algorithms for Dynamics-Based Robot Movement Optimization
,”
IEEE Trans. Rob.
,
21
(
4
), pp.
657
667
.10.1109/TRO.2004.842336
3.
Martin
,
B.
, and
Bobrow
,
J.
,
1999
, “
Minimum-Effort Motions for Open-Chain Manipulators With Task-Dependent End-Effector Constraints
,”
Int. J. Rob. Res.
,
18
(
2
), pp.
213
224
.10.1177/027836499901800206
4.
Dopico
,
D.
,
González
,
F.
,
Luaces
,
A.
,
Saura
,
M.
, and
García-Vallejo
,
D.
,
2018
, “
Direct Sensitivity Analysis of Multibody Systems With Holonomic and Nonholonomic Constraints Via an Index-3 Augmented Lagrangian Formulation With Projections
,”
Nonlinear Dyn.
,
93
(
4
), pp.
2039
2056
.10.1007/s11071-018-4306-y
5.
Hsu
,
Y.
, and
Anderson
,
K.
,
2002
, “
Recursive Sensitivity Analysis for Constrained Multi-Rigid-Body Dynamic Systems Design Optimization
,”
Struct. Multidiscip. Optim.
,
24
(
4
), pp.
312
324
.10.1007/s00158-002-0242-y
6.
Peng
,
H.
,
Zhang
,
M.
, and
Zhang
,
L.
,
2021
, “
Semi-Analytical Sensitivity Analysis for Multibody System Dynamics Described by Differential–Algebraic Equations
,”
AIAA J.
,
59
(
3
), pp.
893
904
.10.2514/1.J059355
7.
Wang
,
S.
,
Tian
,
Q.
,
Hu
,
H.
,
Shi
,
J.
, and
Zeng
,
L.
,
2021
, “
Sensitivity Analysis of Deployable Flexible Space Structures With a Large Number of Design Parameters
,”
Nonlinear Dyn.
,
105
(
3
), pp.
2055
2079
.10.1007/s11071-021-06741-4
8.
Featherstone
,
R.
,
2007
,
Rigid Body Dynamics Algorithms
,
Springer
,
New York
.
9.
Carpentier
,
J.
, and
Mansard
,
N.
,
2018
, “
Analytical Derivatives of Rigid Body Dynamics Algorithms
,”
Robotics: Science and Systems (RSS 2018)
, Pittsburgh, PA, June.https://www.roboticsproceedings.org/rss14/p38.pdf
10.
Carpentier
,
J.
,
Saurel
,
G.
,
Buondonno
,
G.
,
Mirabel
,
J.
,
Lamiraux
,
F.
,
Stasse
,
O.
, and
Mansard
,
N.
,
2019
, “
The Pinocchio c++ Library: A Fast and Flexible Implementation of Rigid Body Dynamics Algorithms and Their Analytical Derivatives
,” Proceedings of the 2019 IEEE/SICE International Symposium on System Integration (
SII
),
IEEE
,
Paris, France
, Jan. 14–16, pp.
614
619
.10.1109/SII.2019.8700380
11.
Singh
,
S.
,
Russell
,
R.
, and
Wensing
,
P.
,
2022
, “
Efficient Analytical Derivatives of Rigid-Body Dynamics Using Spatial Vector Algebra
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
1776
1783
.10.1109/LRA.2022.3141194
12.
Murray
,
R.
,
Li
,
Z.
, and
Shankar Sastry
,
S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton, FL
.
13.
Lynch
,
K.
, and
Park
,
F.
,
2017
,
Modern Robotics: Mechanics, Planning, and Control
,
Cambridge Univeristy Press
,
Cambridge, UK
.
14.
Müller
,
A.
, and
Kumar
,
S.
,
2021
, “
Closed-Form Time Derivatives of the Equations of Motion of Rigid Body Systems
,”
Multibody Syst. Dyn.
,
53
(
3
), pp.
257
273
.10.1007/s11044-021-09796-8
15.
Müller
,
A.
,
2021
, “
An o(n)-Algorithm for the Higher-Order Kinematics and Inverse Dynamics of Serial Manipulators Using Spatial Representation of Twists
,”
IEEE Rob. Autom. Lett.
,
6
(
2
), pp.
397
404
.10.1109/LRA.2020.3044028
16.
Müller
,
A.
,
2019
, “
An Overview of Formulae for the Higher-Order Kinematics of Lower-Pair Chains With Applications in Robotics and Mechanism Theory
,”
Mech. Mach. Theory
,
142
, p.
103594
.10.1016/j.mechmachtheory.2019.103594
17.
Hestenes
,
D.
,
2003
, “
Spacetime Physics With Geometric Algebra
,”
Am. J. Phys.
,
71
(
7
), pp.
691
714
.10.1119/1.1571836
18.
Doran
,
C.
,
Gullans
,
S. R.
,
Lasenby
,
A.
,
Lasenby
,
J.
, and
Fitzgerald
,
W.
,
2003
,
Geometric Algebra for Physicists
,
Cambridge University Press
,
Cambridge, UK
.
19.
Bayro-Corrochano
,
E.
,
2021
, “
A Survey on Quaternion Algebra and Geometric Algebra Applications in Engineering and Computer Science 1995-2020
,”
IEEE Access
,
9
, pp.
104326
104355
.10.1109/ACCESS.2021.3097756
20.
Lopes
,
W.
, and
Lopes
,
C.
,
2019
, “
Geometric-Algebra Adaptive Filters
,”
IEEE Trans. Signal Process.
,
67
(
14
), pp.
3649
3662
.10.1109/TSP.2019.2916028
21.
Chen
,
Y.
,
Huang
,
P.
, and
Ding
,
Y.
,
2022
, “
An Analytical Method for Corner Smoothing of Five-Axis Linear Paths Using the Conformal Geometric Algebra
,”
Comput.-Aided Des.
,
153
, p.
103408
.10.1016/j.cad.2022.103408
22.
Bayro-Corrochano
,
E.
, and
Zamora-Esquivel
,
J.
,
2007
, “
Differential and Inverse Kinematics of Robot Devices Using Conformal Geometric Algebra
,”
Robotica
,
25
(
1
), pp.
43
61
.10.1017/S0263574706002980
23.
Bayro-Corrochano
,
E.
,
Reyes-Lozano
,
L.
, and
Zamora-Esquivel
,
J.
,
2006
, “
Conformal Geometric Algebra for Robotic Vision
,”
J. Math. Imaging Vision
,
24
(
1
), pp.
55
81
.10.1007/s10851-005-3615-1
24.
Bayro-Corrochano
,
E.
,
2019
, “
Robot Modeling and Control Using the Motor Algebra Framework
,” 12th International Workshop on Robot Motion and Control (
RoMoCo
),
IEEE
,
Poznan, Poland
, July 8–10, pp.
1
8
.10.1109/RoMoCo.2019.8787386
25.
Hestenes
,
D.
, and
Fasse
,
E. D.
,
2002
,
Homogeneous Rigid Body Mechanics With Elastic Coupling
,
Birkhäuser Boston
,
Boston, MA
, pp.
197
212
.
26.
Hadfield
,
H.
, and
Lasenby
,
J.
,
2020
,
Constrained Dynamics in Conformal and Projective Geometric Algebra
,
Lecture Notes in Computer Science
, Cham, Switzerland, pp.
459
471
.
27.
Gunn
,
C.
,
2017
, “
Doing Euclidean Plane Geometry Using Projective Geometric Algebra
,”
Adv. Appl. Clifford Algebras
,
27
(
2
), pp.
1203
1232
.10.1007/s00006-016-0731-5
28.
Gunn
,
C.
,
2017
, “
Geometric Algebras for Euclidean Geometry
,”
Adv. Appl. Clifford Algebras
,
27
(
1
), pp.
185
208
.10.1007/s00006-016-0647-0
29.
Gunn
,
C.
,
2011
, “
Geometry, Kinematics, and Rigid Body Mechanics in Cayley-Klein Geometries
,” Doctoral thesis,
Technische Universität Berlin, Fakultät II - Mathematik und Naturwissenschaften
,
Berlin
.
30.
Singh
,
S.
, and
Wensing
,
P.
,
2022
, “
IDSVA Matlab Version
,” accessed on Mar 1, https://github.com/ROAM-Lab-ND/spatial_v2_extended/
31.
Staffetti
,
E.
,
2004
, “
Kinestatic Analysis of Robot Manipulators Using the Grassmann-Cayley Algebra
,”
IEEE Trans. Rob. Autom.
,
20
(
2
), pp.
200
210
.10.1109/TRA.2004.824644
32.
Gunn
,
C. G.
,
2019
, “
Course Notes Geometric Algebra for Computer Graphics
,”
SIGGRAPH 2019
arXiv:2002.04509 [cs].
33.
Müller
,
A.
,
2017
, “
Coordinate Mappings for Rigid Body Motions
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
2
), p.
021010
.10.1115/1.4034730
34.
Sun
,
G.
, and
Ding
,
Y.
,
2023
, “
High-Order Inverse Dynamics of Serial Robots Based on Projective Geometric Algebra
,”
Multibody Syst. Dyn.
, epub.10.1007/s11044-023-09915-7
35.
Wensing
,
P.
,
Kim
,
S.
, and
Slotine
,
J.-J.
,
2018
, “
Linear Matrix Inequalities for Physically Consistent Inertial Parameter Identification: A Statistical Perspective on the Mass Distribution
,”
IEEE Rob. Autom. Lett.
,
3
(
1
), pp.
60
67
.10.1109/LRA.2017.2729659
36.
Park
,
F.
,
Choi
,
J.
, and
Ploen
,
S.
,
1999
, “
Symbolic Formulation of Closed Chain Dynamics in Independent Coordinates
,”
Mech. Mach. Theory
,
34
(
5
), pp.
731
751
.10.1016/S0094-114X(98)00052-4
You do not currently have access to this content.