Abstract

In this paper, we consider the design of a multi-objective lateral controller for highly automated vehicles. Higher levels of automation require vehicles to resolve complex situations and orchestrate the underlying vehicle controllers such that in the event of a conflicting situation, the car is able to make the appropriate decision on which controller/objective to prioritize. We formulate the problem as hybrid switched system where event-triggered decision-making algorithms can be considered together with the lower-level dynamics and control-related objectives. To this end, a model regulator-based yaw rate controller and a path following controller are orchestrated through hybrid model predictive control (HMPC). We demonstrate the validity and robustness of the presented method through simulations where the automated vehicle is subjected to various scenarios with conflicting objectives and operating conditions. We show that robustness against model uncertainty is achieved by the yaw dynamic regulator and we also demonstrate that the hybrid controller orchestrates the switched modes provided by the regulator to achieve path tracking under conflicting objectives.

References

1.
Banks
,
V. A.
,
Eriksson
,
A.
,
O'Donoghue
,
J.
, and
Stanton
,
N. A.
,
2018
, “
Is Partially Automated Driving a Bad Idea? Observations From an on-Road Study
,”
Appl. Ergonom.
,
68
(
4
), pp.
138
145
.10.1016/j.apergo.2017.11.010
2.
Shi, E., Gasser, T., Seeck, A., and Auerswald, R.,
2020
, “The Principles of Operation Framework: A Comprehensive Classification Concept for Automated Driving Functions,”
SAE Intl. J CAV
, 3(1), pp.
27
37
.10.4271/12-03-01-0003
3.
Kyriakidis
,
M.
,
Happee
,
R.
, and
de Winter
,
J.
,
2015
, “
Public Opinion on Automated Driving: Results of an International Questionnaire Among 5000 Respondents
,”
Transp. Res. Part F: Traffic Psychol. Behav.
,
32
, pp.
127
140
.10.1016/j.trf.2015.04.014
4.
Mouri
,
H.
, and
Furusho
,
H.
,
1997
, “
Automatic Path Tracking Using Linear Quadratic Control Theory
,”
Proceedings of Conference on Intelligent Transportation Systems
,
Boston, MA
, Nov. 12, pp.
948
953
.10.1109/IT SC.1997.660601
5.
Wang
,
Z.
,
Montanaro
,
U.
,
Fallah
,
S.
,
Sorniotti
,
A.
, and
Lenzo
,
B.
,
2018
, “
A Gain Scheduled Robust Linear Quadratic Regulator for Vehicle Direct Yaw Moment Control
,”
Mechatronics
,
51
, pp.
31
45
.10.1016/j.mechatronics.2018.01.013
6.
Guldner
,
J.
,
Utkin
,
V.
, and
Ackermann
,
J.
, “
A Sliding Mode Control Approach to Automatic Car Steering
,”
Proceedings of 1994 American Control Conference–ACC '94
,
Baltimore, MD
, June 29–July 1, pp.
1969
1973
.10.1109/ACC.1994.752420
7.
Barooah
,
U.
, and
Manjunath
,
S.
,
2021
, “
A Sliding-Mode Control Approach Towards Design of Driving Assistance System for Lane-Change Maneuver in Connected Vehicles
,”
21st International Conference on Control, Automation and Systems
(
ICCAS
),
Jeju, Republic of Korea
, Oct. 12–15, pp.
1037
1042
.10.23919/ICCAS52745.2021.9649746
8.
Hessburg
,
T.
, and
Tomizuka
,
M.
,
1993
, “
Fuzzy Logic Control for Lateral Vehicle Guidance
,”
Proceedings of IEEE International Conference on Control and Applications
, Vancouver, BC, Canada, Sept. 13–16, pp.
581
586
.10.1109/37.295971
9.
Wang
,
X.
,
Fu
,
M.
,
Ma
,
H.
, and
Yang
,
Y.
,
2015
, “
Lateral Control of Autonomous Vehicles Based on Fuzzy Logic
,”
Control Eng. Pract.
,
34
(
1
), pp.
1
17
.10.1016/j.conengprac.2014.09.015
10.
Kehtarnavaz
,
N.
, and
Sohn
,
W.
,
1991
, “
Steering Control of Autonomous Vehicles by Neural Networks
,”
American Control Conference
,
Boston, MA
, June 26–28, pp.
3096
3101
.10.23919/ACC.1991.4791978
11.
Garimella
,
G.
,
Funke
,
J.
,
Wang
,
C.
, and
Kobilarov
,
M.
,
2017
, “
Neural Network Modeling for Steering Control of an Autonomous Vehicle
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
),
Vancouver, BC, Canada
, Sept. 24–28, pp.
2609
2615
.10.1109/IROS.2017.8206084
12.
Di Cairano
,
S.
,
Yanakiev
,
D.
,
Bemporad
,
A.
,
Kolmanovsky
,
I.
, and
Hrovat
,
D.
,
2008
, “
An MPC Design Flow for Automotive Control and Applications to Idle Speed Regulation
,”
47th IEEE Conference on Decision and Control
,
Cancun, Mexico
, Dec. 9–11, pp.
5686
5691
.10.1109/CDC.2008.4738865
13.
Bemporad
,
A.
, and
Naik
,
V. V.
,
2018
, “
A Numerically Robust Mixed-Integer Quadratic Programming Solver for Embedded Hybrid Model Predictive Control
,”
IFAC-Papers OnLine
,
51
(
20
), pp.
412
417
.10.1016/j.ifacol.2018.11.068
14.
Tøndel
,
P.
,
Johansen
,
T. A.
, and
Bemporad
,
A.
,
2003
, “
An Algorithm for Multi-Parametric Quadratic Programming and Explicit MPC Solutions
,”
Automatica
,
39
(
3
), pp.
489
497
.10.1016/S0005-1098(02)00250-9
15.
Borrelli
,
F.
,
Baotić
,
M.
,
Bemporad
,
A.
, and
Morari
,
M.
,
2001
, “
Efficient on-Line Computation of Explicit Model Predictive Control
,”
Proceedings 40th IEEE Conference on Decision and Control
, Seoul, South Korea, July 6–11, pp.
3619
3622
.
16.
Hrovat
,
D.
,
Di Cairano
,
S.
,
Tseng
,
H. E.
, and
Kolmanovsky
,
I. V.
,
2012
, “
The Development of Model Predictive Control in Automotive Industry: A Survey
,”
IEEE International Conference on Control Applications
, Dubrovnik, Croatia, Oct. 3–5, pp.
295
302
.10.1109/CCA.2012.6402735
17.
Bemporad
,
A.
, and
Morari
,
M.
,
1999
, “
Control of Systems Integrating Logic, Dynamics, and Constraints
,”
Automatica
,
35
(
3
), pp.
407
427
.10.1016/S0005-1098(98)00178-2
18.
Bernardini
,
D.
,
Di Cairano
,
S.
,
Bemporad
,
A.
, and
Tseng
,
H. E.
,
2009
, “
Drive-by-Wire Vehicle Stabilization and Yaw Regulation: A Hybrid Model Predictive Control Design
,”
Proceedings of the IEEE Conference on Decision and Control
, Shanghai, China, Dec. 15–18, pp.
7621
7626
.10.1109/CDC.2009.5400860
19.
Corona
,
D.
, and
De Schutter
,
B.
,
2007
, “
Comparison of a Linear and a Hybrid Adaptive Cruise Controller for a SMART
,”
Proceedings of the IEEE Conference on Decision and Control
, New Orleans, LA, Dec. 12–14 , pp.
4779
4784
.10.1109/CDC.2007.4434054
20.
Mahjoub
,
H. N.
,
Davoodi
,
M.
,
Fallah
,
Y. P.
, and
Velni
,
J. M.
,
2019
, “
A Stochastic Hybrid Structure for Predicting Disturbances in Mixed Automated and Human-Driven Vehicular Scenarios
,”
IFAC-PapersOnLine
,
51
(
34
), pp.
400
402
.10.1016/j.ifacol.2019.01.006
21.
Bichi
,
M.
,
Ripaccioli
,
G.
,
Di Cairano
,
S.
,
Bernardini
,
D.
,
Bemporad
,
A.
, and
Kolmanovsky
,
I.
,
2010
, “
Stochastic Model Predictive Control With Driver Behavior Learning for Improved Powertrain Control
,” 49th IEEE Conference on Decision and Control (
CDC
),
Atlanta, GA
, Dec. 15–17, pp.
6077
6082
.10.1109/CDC.2010.5717791
22.
Batkovic
,
I.
,
Rosolia
,
U.
,
Zanon
,
M.
, and
Falcone
,
P.
,
2021
, “
A Robust Scenario MPC Approach for Uncertain Multi-Modal Obstacles
,”
IEEE Control Syst. Lett.
,
5
(
3
), pp.
947
952
.10.1109/LCSYS.2020.3006819
23.
Falcone
,
P.
,
Borrelli
,
F.
,
Asgari
,
J.
,
Tseng
,
E.
, and
Hrovat
,
D.
,
2007
, “
A Model Predictive Control Approach for Combined Braking and Steering in Autonomous Vehicles
,”
2007 Mediterranean Conference on Control & Automation
,
Athens, Greece
, June 27–29, pp.
1
6
.10.1109/MED.2007.4433694
24.
Tufa
,
L. D.
, and
Ka
,
C. Z.
,
2016
, “
Effect of Model Plant Mismatch on MPC Performance and Mismatch Threshold Determination
,”
Procedia Eng.
,
148
, pp.
1008
1014
.10.1016/j.proeng.2016.06.518
25.
Badwe
,
A. S.
,
Shah
,
S. L.
,
Patwardhan
,
S. C.
, and
Patwardhan
,
R. S.
,
2008
, “
Model-Plant Mismatch Detection in MPC Applications Using Partial Correlation Analysis
,”
IFAC Proc. Volumes
,
41
(
2
), pp.
14926
14933
.10.3182/20080706-5-KR-1001.02526
26.
Li
,
L.
,
Lu
,
L.
,
Huang
,
Z.
,
Chen
,
X.
, and
Yang
,
S.
,
2020
, “
A Model Mismatch Assessment Method of MPC by Decussation
,”
ISA Trans.
,
106
, pp.
51
60
.10.1016/j.isatra.2020.06.021
27.
Adetola
,
V.
,
DeHaan
,
D.
, and
Guay
,
M.
,
2009
, “
Adaptive Model Predictive Control for Constrained Nonlinear Systems
,”
Syst. Control Lett.
,
58
(
5
), pp.
320
326
.510.1016/j.sysconle.2008.12.002
28.
Bujarbaruah
,
M.
,
Zhang
,
X.
,
Tseng
,
H. E.
, and
Borrelli
,
F.
,
2018
, “Adaptive MPC for Autonomous Lane Keeping,” 14th International Symposium on Advanced Vehicle Control (
AVEC
), Beijing, China, July 16–20. https://www.researchgate.net/publication/323028614_Adaptive_MP C_for_Autonomous_Lane_Keeping
29.
Kothare
,
M. V.
,
Balakrishnan
,
V.
, and
Morari
,
M.
,
1996
, “
Robust Constrained Model Predictive Control Using Linear Matrix Inequalities
,”
Automatica
,
32
(
10
), pp.
1361
1379
. 1010.1016/0005-1098(96)00063-5
30.
Zhang
,
X.
,
Kamgarpour
,
M.
,
Georghiou
,
A.
,
Goulart
,
P.
, and
Lygeros
,
J.
,
2017
, “
Robust Optimal Control With Adjustable Uncertainty Sets
,”
Automatica
,
75
, pp.
249
259
.10.1016/j.automatica.2016.09.016
31.
Dixit
,
S.
,
Fallah
,
S.
,
Montanaro
,
U.
,
Dianati
,
M.
,
Stevens
,
A.
,
Mccullough
,
F.
, and
Mouzakitis
,
A.
,
2018
, “
Trajectory Planning and Tracking for Autonomous Overtaking: State-of-the-Art and Future Prospects
,”
Annu. Rev. Control
,
45
, pp.
76
86
.10.1016/j.arcontrol.2018.02.001
32.
Sar iy ild iz
,
E.
,
Oboe
,
R.
, and
Ohnishi
,
K.
,
2020
, “
Disturbance Observer-Based Robust Control and Its Applications: 35th Anniversary Overview
,”
IEEE Trans. Ind. Electron.
,
67
(
3
), pp.
2042
2053
.10.1109/TIE.2019.2903752
33.
Güvenç
,
B. A.
,
Güvenç
,
L.
, and
Karaman
,
S.
,
2010
, “
Robust MIMO Disturbance Observer Analysis and Design With Application to Active Car Steering
,”
Int. J. Robust Nonlinear Control
,
20
(
8
), pp.
873
891
.10.1002/rnc.1476
34.
Güvenç
,
L.
,
Ersolmaz
,
Ş. S.
,
Öncü
,
S.
,
Öztürk
,
E. S.
,
Çetin
,
E.
,
Klç
,
N.
,
Güngör
,
S.
, and
Kanbolat
,
A.
,
2006
, “
Stability Enhancement of a Light Commercial Vehicle Using Active Steering
,”
SAE
Paper No. 2006-01-1181.10.4271/2006-01-1181
35.
Karaman
,
S.
,
Öncü
,
S.
,
Güvenç
,
L.
,
Ersolmaz
,
S.
,
Çetin
,
E.
, and
Kanbolat
,
A.
,
2006
, “
Robust Velocity Scheduled Yaw Stability Control of a Light Commercial Vehicle
,”
IEEE Intelligent Vehicles Symposium
,
Meguro-Ku, Japan
, June 13–15, pp.
504
509
.10.1109/IVS.2006.1689678
36.
Messier
,
P.
,
Nguyễn
,
B.-H.
,
LeBel
,
F.-A.
, and
Trovão
,
J. P. F.
,
2020
, “
Disturbance Observer-Based State-of-Charge Estimation for Li-Ion Battery Used in Light Electric Vehicles
,”
J. Energy Storage
,
27
, p.
101144
.10.1016/j.est.2019.101144
37.
Rajamani
,
R.
,
2012
,
Vehicle Dynamics and Control
,
Springer U.S. Mechanical Engineering Series
, Springer, New York.
38.
Falcone
,
P.
,
Borrelli
,
F.
,
Asgari
,
J.
,
Tseng
,
H. E.
, and
Hrovat
,
D.
,
2007
, “
Predictive Active Steering Control for Autonomous Vehicle Systems
,”
IEEE Trans. Control Syst. Technol.
,
15
(
3
), pp.
566
580
.510.1109/TCST.2007.894653
39.
Ni
,
L.
,
Gupta
,
A.
,
Falcone
,
P.
, and
Johannesson
,
L.
,
2016
, “
Vehicle Lateral Motion Control With Performance and Safety Guarantees
,”
IFAC-PapersOnLine
,
49
(
11
), pp.
285
290
.10.1016/j.ifacol.2016.08.043
40.
Viana
,
I. B.
,
Kanchwala
,
H.
,
Ahiska
,
K.
, and
Aouf
,
N.
,
2021
, “
A Comparison of Trajectory Planning and Control Frameworks for Cooperative Autonomous Driving
,”
ASME J. Dyn. Syst., Meas., Control
,
143
(
7
), p.
071002
.10.1115/1.4049554
41.
Kiencke
,
U.
, and
Nielsen
,
L.
,
2005
,
Automotive Control Systems: For Engine, Driveline, and Vehicle
, 2nd ed.,
Springer
Berlin, Heidelberg.
42.
Pacejka
,
H. B.
,
2006
,
Tire and Vehicle Dynamics
, Butterworth-Heinemann, Oxford, UK.
43.
Dugoff
,
H.
,
Fancher
,
P. S.
, and
Segel
,
L.
,
1970
, “An Analysis of Tire Traction Properties and Their Influence on Vehicle Dynamic Performance,”
SAE
Paper No. 700377.10.4271/700377
44.
Borrelli
,
F.
,
Falcone
,
P.
,
Keviczky
,
T.
,
Asgari
,
J.
, and
Hrovat
,
D.
,
2005
, “
MPC-Based Approach to Active Steering for Autonomous Vehicle Systems
,”
Int. J. Veh. Auton. Syst.
,
3
(
2/3/4
), p.
265
.10.1504/IJVAS.2005.008237
45.
Falcone
,
P.
,
Tseng
,
E.
,
Borrelli
,
F.
,
Asgari
,
J.
, and
Hrovat
,
D.
,
2008
, “
MPC-Based Yaw and Lateral Stabilisation Via Active Front Steering and Braking
,”
Vehicle System Dynamics
.
46.
Bünte
,
T.
,
Odenthal
,
D.
,
Aksun-Güvenç
,
B.
, and
Güvenç
,
L.
,
2001
, “
Robust Vehicle Steering Control Design Based on the Disturbance Observer
,”
IFAC Proc. Volumes
,
34
(
1
), pp.
97
106
.310.1016/S1474-6670(17)34384-7
47.
Öncü
,
S.
,
Guvenç
,
L.
,
Ersolmaz
,
S.
,
Öztürk
,
S.
,
Kiç
,
N.
, and
Sinal
,
M.
,
2007
, “Steer-by-Wire Control of a Light Commercial Vehicle Using a Hardware-in-the-Loop Test Setup,”
SAE
Paper No. 2007-01-4198.10.4271/2007-01-4198
48.
Öncü
,
S.
,
Karaman
,
S.
,
Güvenç
,
L.
,
Ersolmaz
,
S. S.
,
Öztürk
,
E. S.
,
Çetin
,
E.
, and
Sinal
,
M.
,
2007
, “
Robust Yaw Stability Controller Design for a Light Commercial Vehicle Using a Hardware in the Loop Steering Test Rig
,”
IEEE Intelligent Vehicles Symposium
,
Istanbul, Turkey
, June 13–15, pp.
852
859
.10.1109/IVS.2007.4290223
49.
Bemporad
,
A.
,
2004
, “
Hybrid Toolbox - User's Guide
,” accessed July 20, 2022, http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox
50.
Torrisi
,
F. D.
, and
Bemporad
,
A.
,
2004
, “
{HYSDEL} – {a} Tool for Generating Computational Hybrid Models
,”
IEEE Trans. Control Syst. Technol.
,
12
(
2
), pp.
235
249
.10.1109/TCST.2004.824309
51.
Du
,
H.
,
Zhang
,
N.
, and
Dong
,
G.
,
2007
, “
Robust Active Roll Controller Design for Vehicles Considering Variable Speed and Actuator Delay
,”
SAE
Paper No. 2007-01-0825.10.4271/2007-01-0825
You do not currently have access to this content.