Icing limits the performance of wind turbines in cold climates. The prediction of the aerodynamic performance losses and their distribution due to ice accretion is essential. Blade element momentum (BEM) is the basis of blade structural studies. The accuracy and limitations of this method in icing condition are assessed in the present study. To this purpose, a computational study on the aerodynamic performance of the full-scale NREL 5 MW rotor is performed. Three-dimensional (3D) steady Reynolds-averaged Navier–Stokes (RANS) simulations are performed for both clean and iced blade, as well as BEM calculations using two-dimensional (2D) computational fluid dynamics (CFD) sectional airfoil data. The total power calculated by the BEM method is in close agreement with the 3D CFD results for the clean blade. There is a 4% deviation, while it is underestimated by 28% for the iced one. The load distribution along the clean blade span differs between both methods. Load loss due to the ice, predicted by 3D CFD, is 32% in extracted power and the main loss occurs at the regions where the ice horn height exceeds 8% of the chord length.

References

1.
Mortensen
,
K.
,
2008
, “
CFD Simulations of an Airfoil With Leading Edge Ice Accretion
,” Master's Thesis, Technical University of Denmark, DTU, Kgs. Lyngby, Denmark.
2.
Schubel
,
P. J.
, and
Crossley
,
R. J.
,
2012
, “
Wind Turbine Blade Design
,”
Energies
,
5
(
9
), pp. 3425–3449.
3.
Tong
,
W.
,
2010
,
Wind Power Generation and Wind Turbine Design
,
WIT Press
,
Boston, MA
.
4.
Johansen
,
J.
, and
Sørensen
,
N. N.
,
2004
, “
Aerofoil Characteristics From 3D CFD Rotor Computations
,”
Wind Energy
,
7
(
4
), pp.
283
294
.
5.
Mandas
,
N.
, and
Cambuli
,
F.
,
2008
, “
CFD-RANS Study of Horizontal Axis Wind Turbines
,”
Ph.D. thesis
, Universita' degli Studi di Cagliari, Cagliari, Italy.http://veprints.unica.it/84/1/carcangiu_carlo_enrico.pdf
6.
Arramach
,
J.
,
Boutammachte
,
N.
,
Bouatem
,
A.
, and
Al Mers
,
A.
,
2017
, “
Prediction of the Wind Turbine Performance by Using a Modified BEM Theory With an Advanced Brake State Model
,”
Energy Procedia
,
118
, pp.
149
157
.
7.
Refan
,
M.
, and
Hangan
,
H.
,
2012
, “
Aerodynamic Performance of a Small Horizontal Axis Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
134
(
2
), p.
021013
.
8.
Li
,
Y.
,
Castro
,
A. M.
,
Martin
,
J. E.
,
Sinokrot
,
T.
,
Prescott
,
W.
, and
Carrica
,
P. M.
,
2017
, “
Coupled Computational Fluid Dynamics/Multibody Dynamics Method for Wind Turbine Aero-Servo-Elastic Simulation Including Drivetrain Dynamics
,”
Renewable Energy
,
101
, pp.
1037
1051
.
9.
Hung-Chieh
,
C.
,
2017
, “
Application of the Fictitious Domain Method to Flow Problems With Complex Geometries
,”
Ph.D. thesis
, Texas A&M University, Austin, TX.http://oaktrust.library.tamu.edu/handle/1969.1/161671
10.
Make
,
M.
, and
Vaz
,
G.
,
2015
, “
Analyzing Scaling Effects on Offshore Wind Turbines Using CFD
,”
Renewable Energy
,
83
, pp.
1326
1340
.
11.
Ernst
,
B.
,
Seume
,
J. R.
, and
Herbst
,
F.
,
2016
, “
Effect of Turbulence and Transition Models on the CFD-Based Performance Prediction of Wind Turbines
,”
ASME
Paper No. GT2016-56728.
12.
Ma
,
D.
,
Zhao
,
Y.
,
Qiao
,
Y.
, and
Li
,
G.
,
2015
, “
Effects of Relative Thickness on Aerodynamic Characteristics of Airfoil at a Low Reynolds Number
,”
Chin. J. Aeronaut.
,
28
(
4
), pp.
1003
1015
.
13.
Fernando
,
V.
,
Marcelo
,
R.
, and
Adrian
,
I.
,
2012
, “
Numerical Study of Flow Around Iced Wind Turbine Airfoil
,”
Eng. Appl. Comput. Fluid Mech.
,
6
(
1
), pp.
39
46
.
14.
Chi
,
X.
,
Zhu
,
B.
,
Shih
,
T.
,
Addy
,
H.
, and
Choo
,
Y.
,
2004
, “
CFD Analysis of the Aerodynamics of a Business-Jet Airfoil With Leading-Edge Ice Accretion
,”
AIAA
Paper No. 2004-560.
15.
Krogstad
,
P.
, and
Eriksen Egil
,
P.
,
2013
, “‘
Blind Test’ Calculations of the Performance and Wake Development for a Model Wind Turbine
,”
Renewable Energy
,
50
, pp.
325
333
.
16.
Krogstad
,
P.
, and
Adaramola
,
M.
,
2012
, “
Performance and Near Wake Measurements of a Model Horizontal Axis Wind Turbine
,”
Wind Energy
,
15
(
5
), pp.
743
756
.
17.
Chow
,
R.
, and
van Dam
,
C. P.
,
2012
, “
Verification of Computational Simulations of the NREL 5 MW Rotor With a Focus on Inboard Flow Separation
,”
Wind Energy
,
15
(
8
), pp.
967
981
.
18.
Zanon
,
A.
,
De Gennaro
,
M.
, and
Kühnelt
,
H.
,
2018
, “
Wind Energy Harnessing of the NREL 5 MW Reference Wind Turbine in Icing Conditions Under Different Operational Strategies
,”
Renewable Energy
,
115
(
Suppl. C
), pp.
760
772
.
19.
Abbott
,
I. H.
,
Von Doenhoff
,
A. E.
, and
Stivers
,
L. S.
,
1945
, “
Summary of Airfoil Data
,” National Advisory Committee for Aeronautics, Langley Field, VA, Report No.
NACA-TR-824
https://ntrs.nasa.gov/search.jsp?R=19930090976.
20.
Timmer
,
W. A.
, and
van Rooij
,
R. P. J. O. M.
,
2003
, “
Summary of the Delft University Wind Turbine Dedicated Airfoils
,”
ASME J. Sol. Energy Eng.
,
125
(
4
), pp.
488
496
.
21.
van Rooij
,
R. P. J. O. M.
, and
Timmer
,
W. A.
,
2003
, “
Roughness Sensitivity Considerations for Thick Rotor Blade Airfoils
,”
ASME J. Sol. Energy Eng.
,
125
, pp.
468
478
.http://lr.home.tudelft.nl/fileadmin/Faculteit/LR/Organisatie/Afdelingen_en_Leerstoelen/Afdeling_AEWE/Wind_Energy/Research/Publications/Publications_2003/doc/Rough_Airfoils_SOL_Vol125_RR2003.pdf
22.
Llorente
,
E.
,
Gorostidi
,
A.
,
Jacobs
,
M.
,
Timmer
,
W. A.
,
Munduate
,
X.
, and
Pires
,
O.
,
2014
, “
Wind Tunnel Tests of Wind Turbine Airfoils at High Reynolds Numbers
,”
J. Phys.: Conf. Ser.
,
524
, p. 012012.
23.
Kooijman
,
H. J. T.
,
Lindenburg
,
C.
,
Winkelaar
,
D.
, and
vander Hooft
,
E. L.
,
2003
, “
Aero-Elastic Modelling of the DOWEC 6 MW Pre-Design in PHATAS
,” Report No. ECN-CX-01-135.
24.
Battisti
,
L.
,
2013
, “
Icing on Wind Turbines
,” Ph.D. thesis, Università degli Studi di Udine, Udine, Italy.
25.
Broeren
,
A. P.
,
Diebold
,
J. M.
, and
Bragg
,
M. B.
,
2013
, “
Aerodynamic Classification of Swept-Wing Ice Accretion
,” NASA, Glenn Research Center, Cleveland, OH, Report No. NASA/TM-2013-216381.
26.
Bragg
,
M. B.
,
1986
, “
An Experimental Study of the Aerodynamics of a NACA 0012 Airfoil With a Simulated Glaze Ice Accretion
,” National Aeronautics and Space Administration, Washington, DC, Report No. 52.
27.
Battisti
,
L.
,
2015
, “
Icing Impacts and Mitigation Systems
,”
Wind Turbines in Cold Climates, Anonymous
,
Springer International Publishing
, Cham, Switzerland.
28.
Beaugendre
,
H.
,
Morency
,
F.
, and
Habashi
,
W. G.
,
2006
, “
Development of a Second Generation In-Flight Icing Simulation Code
,”
ASME J. Fluids Eng.
,
128
(
2
), pp.
378
387
.
29.
Hochart
,
C.
,
Fortin
,
G.
,
Perron
,
J.
, and
Ilinca
,
A.
,
2008
, “
Wind Turbine Performance Under Icing Conditions
,”
Wind Energy
,
11
(
4
), pp.
319
333
.
30.
Germanischer Lloyd Industrial Services
,
2010
,
Guideline for the Certification of Wind Turbines
,
Germanischer Lloyd
,
Hamburg, Germany
.
31.
Papadakis
,
M.
,
Alansatan
,
S.
, and
Wong
,
S.
,
2000
, “
Aerodynamic Characteristics of a Symmetric NACA Section With Simulated Ice Shapes
,”
AIAA
Paper No. 2000-98.
32.
DeGennaro
,
A. M.
,
Rowley
,
C. W.
, and
Martinelli
,
L.
,
2015
, “
Uncertainty Quantification for Airfoil Icing Using Polynomial Chaos Expansions
,”
J. Aircr.
,
52
(
5
), pp.
1404
1411
.
33.
Hansen
,
M. O. L.
,
2015
,
Aerodynamics of Wind Turbines
, 2nd ed.,
Routledge
, New York.
34.
ANSYS
,
2013
,
ANSYS CFX-Solver Modeling Guide Release 15.0
,
ANSYS
, Canonsburg, PA.
35.
ANSYS
,
2013
,
ANSYS CFX-Solver Theory Guide Release 15.0
,
ANSYS
, Canonsburg, PA.
36.
Menter
,
F.
,
1993
, “
Zonal Two Equation k-w Turbulence Models for Aerodynamic Flows
,”
23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference
, Orlando, FL, July 6–9, pp. 1–12.
37.
Ducoin
,
A.
,
Astolfi
,
J. A.
,
Deniset
,
F.
, and
Sigrist
,
J.
,
2009
, “
Computational and Experimental Investigation of Flow Over a Transient Pitching Hydrofoil
,”
Eur. J. Mech. B/Fluids
,
28
(
6
), pp.
728
743
.
38.
Menter
,
F. R.
,
1992
, “
Improved Two-Equation K-Omega Turbulence Models for Aerodynamic Flows
,” NASA Ames Research Center, Moffett Field, CA.
39.
Tabatabaei
,
N.
,
Cervantes
,
M. J.
,
Trivedi
,
C.
, and
Aidanpää
,
J.
,
2016
, “
Numerical Study of Aerodynamic Characteristics of a Symmetric NACA Section With Simulated Ice Shapes
,”
J. Phys.: Conf. Ser.
,
753
, p. 022055.
40.
Tabatabaei
,
N.
,
Cervantes
,
M. J.
, and
Trivedi
,
C.
,
2018
, “
Time-Dependent Effects of Glaze Ice on the Aerodynamic Characteristics of an Airfoil
,”
Int. J. Rotat. Mach.
,
2018
, p. 2981739.
41.
Tabatabaei
,
N.
,
Cervantes
,
M. J.
, and
Trivedi
,
C.
,
2018
, “
Investigation of the Numerical Methodology of a Model Wind Turbine Simulation
,”
J. Appl. Fluid Mech.
,
11
(
3
), pp.
527
544
.
42.
Papadakis
,
M.
,
Gile Laflin
,
B.
,
Youssef
,
G.
, and
Ratvasky
,
T.
,
2001
, “
Aerodynamic Scaling Experiments With Simulated Ice Accretions
,”
AIAA
Paper No. 2001-833.
43.
Furst
,
J.
,
Straka
,
P.
,
Příhoda
,
J.
, and
Šimurda
,
D.
,
2013
, “
Comparison of Several Models of the Laminar/Turbulent Transition
,”
EPJ Web Conf.
,
45
, p. 01032.
44.
Eggenspieler
,
G.
,
2012
,
Modelling LaminarTurbulent Transition Processes
,
ANSYS
, Canonsburg, PA.
45.
Shen
,
W. Z.
,
Hansen
,
M. O. L.
, and
Sørensen
,
J. N.
,
2009
, “
Determination of the Angle of Attack on Rotor Blades
,”
Wind Energy
,
12
(
1
), pp.
91
98
.
46.
Guntur
,
S.
, and
Sørensen
,
N. N.
,
2014
, “
An Evaluation of Several Methods of Determining the Local Angle of Attack on Wind Turbine Blades
,”
J. Phys.: Conf. Ser.
,
555
(
1
), p. 012045.
47.
Hansen
,
M. O. L.
,
Sørensen
,
N. N.
,
Sørensen
,
J. N.
, and
Michelsen
,
J. A.
,
1998
, “
Extraction of Lift, Drag and Angle of Attack From Computed 3-D Viscous Flow Around a Rotating Blade
,” European Wind Energy Conference, Dublin, Ireland, pp.
499
502
.
48.
Hansen
,
M. O. L.
, and
Johansen
,
J.
,
2004
, “
Tip Studies Using CFD and Comparison With Tip Loss Models
,”
Wind Energy
,
7
(
4
), pp.
343
356
.
49.
Gantasala
,
S.
,
Tabatabaei
,
N.
,
Cervantes
,
M. J.
, and
Aidanpää
,
J.
, “
A Methodology to Simulate the Dynamic Behavior of Wind Turbine With Iced Blades
,” Cold Reg. Sci. Technol. (submitted).
You do not currently have access to this content.