Abstract

Finding alternative refrigerants is of extreme importance to mitigate anthropogenic climate change. Among the next-generation refrigerants, hydrocarbons (HCs) are of technical interest because they are natural, efficient, have low global warming potential (GWP), and zero ozone depletion potential (ODP). However, their flammability impedes their widespread usage for fire-safety reasons. The present work investigated zeotropic mixtures of hydrocarbons with carbon dioxide (CO2) as refrigerants for a simple vapor-compression refrigeration cycle, since their flammability risks are lower than those of pure hydrocarbons. Refrigerants were selected utilizing various screening steps based on environmental effects (such as GWP, ODP, and toxicity), thermophysical properties (such as critical temperature, and boiling point), and mixture data availability. The thermodynamic analysis for these selected zeotropic mixtures was performed for a cycle with a constant temperature of energy (heat) transfer fluid in both the evaporator and the condenser/gas cooler. Subsequently, performance parameters like the coefficient of performance and volumetric refrigeration capacity were compared for each of these blends at different operating conditions, and thus, the most promising hydrocarbon mixtures with CO2 were identified. As a result, the following four hydrocarbons, individually blended with CO2, were favorable in performance: propylene, dimethyl ether, propane, and isobutane. Further analysis was performed to determine the non-dimensional exergy destruction by the various components of the cycle.

References

1.
Secretariat
,
U. O.
,
2016
,
UNEP Ozone Secretariat in Twenty-Eighth Meeting of the Parties to the Montreal Protocol on Substances That Deplete the Ozone Layer
,
Document UNEP/OzL.Pro.28/CRP/10, United Nations Environment Programme
,
Kigali, Rwanda
.
2.
European Parliament Regulation
.
No. 517/2014 of the European Parliament and of the Council of 16 April 2014 on Fluorinated Greenhouse Gases and Repealing Regulation (EC) No. 842/2006
.
Official Journal of the European Union L150
,
195
230
.
3.
Hawken
,
P.
,
2017
,
Drawdown : the Most Comprehensive Plan Ever Proposed to Reverse Global Warming
,
Penguin Books
,
New York
.
4.
McLinden
,
M. O.
,
Brown
,
J. S.
,
Brignoli
,
R.
,
Kazakov
,
A. F.
, and
Domanski
,
P. A.
,
2017
, “
Limited Options for low-Global-Warming-Potential Refrigerants
,”
Nat. Commun.
,
8
(
1
), p.
14476
. 10.1038/ncomms14476
5.
Kim
,
S.
,
Chen
,
J.
,
Cheng
,
T.
,
Gindulyte
,
A.
,
He
,
J.
,
He
,
S.
, and
Bolton
,
E. E.
,
2019
, “
PubChem 2019 Update: Improved Access to Chemical Data
,”
Nucleic Acids Res.
,
47
(
D1
), pp.
D1102
D1109
. 10.1093/nar/gky1033
6.
Van Orshoven
,
D.
,
Klein
,
S. A.
, and
Beckman
,
W. A.
,
1993
, “
An Investigation of Water as a Refrigerant
,”
ASME J. Energy Resour. Technol.
,
115
(
4
), pp.
257
263
. 10.1115/1.2906430
7.
Bamigbetan
,
O.
,
Eikevik
,
T. M.
,
Nekså
,
P.
, and
Bantle
,
M.
,
2017
, “
Review of Vapour Compression Heat Pumps for High Temperature Heating Using Natural Working Fluids
,”
Int. J. Refrig.
,
80
, pp.
197
211
. 10.1016/j.ijrefrig.2017.04.021
8.
Yilmaz
,
B.
,
Mancuhan
,
E.
, and
Erdonmez
,
N.
,
2018
, “
A Parametric Study on a Subcritical CO2/NH3 Cascade Refrigeration System for Low Temperature Applications
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092004
. 10.1115/1.4039976
9.
Momeni
,
H.
, and
Keshtkar
,
M. M.
,
2019
, “
Thermodynamic, Economic and Environmental Comparison Between the Direct and Indirect CO2 Refrigeration Cycle With Conventional Indirect NH3 Cycle With Considering a Heat Recovery System in an Ice Rink: A Case Study
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), pp.
1
30
. 10.1115/1.4044270
10.
Granryd
,
E. J. I. J. O. R.
,
2001
, “
Hydrocarbons as Refrigerants—An Overview
,”
Int. J. Refrig.
,
24
(
1
), pp.
15
24
.
11.
ANSI/ASHRAE
,
2013
,
Safety Standard for Refrigeration Systems
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers
,
15-2013
,
Atlanta, GA
.
12.
Corberán
,
J. M.
,
Segurado
,
J.
,
Colbourne
,
D.
, and
Gonzálvez
,
J.
,
2008
, “
Review of Standards for the use of Hydrocarbon Refrigerants in A/C, Heat Pump and Refrigeration Equipment
,”
Int. J. Refrig.
,
31
(
4
), pp.
748
756
. 10.1016/j.ijrefrig.2007.12.007
13.
Sarkar
,
J.
,
Bhattacharyya
,
S.
, and
Gopal
,
M. R.
,
2004
, “
Optimization of a Transcritical CO2 Heat Pump Cycle for Simultaneous Cooling and Heating Applications
,”
Int. J. Refrig.
,
27
(
8
), pp.
830
838
. 10.1016/j.ijrefrig.2004.03.006
14.
Eisazadeh-Far
,
K.
,
Moghaddas
,
A.
,
Rahim
,
F.
, and
Metghalchi
,
H.
,
2010
, “
Burning Speed and Entropy Production Calculation of a Transient Expanding Spherical Laminar Flame Using a Thermodynamic Model
,”
Entropy
,
12
(
12
),
2485
2496
. 10.3390/e12122485
15.
Moghaddas
,
A.
,
Bennett
,
C.
,
Eisazadeh-Far
,
K.
, and
Metghalchi
,
H.
,
2012
, “
Measurement of Laminar Burning Speeds and Determination of Onset of Auto-Ignition of Jet-A/Air and Jet Propellant-8/Air Mixtures in a Constant Volume Spherical Chamber
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
022205
. 10.1115/1.4006480
16.
Rokni
,
E.
,
Moghaddas
,
A.
,
Askari
,
O.
, and
Metghalchi
,
H.
,
2014
, “
Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Acetylene (C2H2)/Air Mixtures
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012204
. 10.1115/1.4028363
17.
Askari
,
O.
,
Vien
,
K.
,
Wang
,
Z.
,
Sirio
,
M.
, and
Metghalchi
,
H.
,
2016
, “
Exhaust gas Recirculation Effects on Flame Structure and Laminar Burning Speeds of H2/CO/air Flames at High Pressures and Temperatures
,”
Appl. Energy
,
179
, pp.
451
462
. 10.1016/j.apenergy.2016.06.118
18.
Yu
,
G.
,
Askari
,
O.
,
Hadi
,
F.
,
Wang
,
Z.
,
Metghalchi
,
H.
,
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2016
, “
Theoretical Prediction of Laminar Burning Speed and Ignition Delay Time of Gas-to-Liquid Fuel
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022202
. 10.1115/1.4033984
19.
Wang
,
Z.
,
Bai
,
Z.
,
Yelishala
,
S. C.
,
Yu
,
G.
, and
Metghalchi
,
H.
,
2018
, “
Effects of Diluent on Laminar Burning Speed and Flame Structure of Gas to Liquid Fuel Air Mixtures at High Temperatures and Moderate Pressures
,”
Fuel
,
231
, pp.
204
214
. 10.1016/j.fuel.2018.05.069
20.
Wang
,
Z.
,
Alswat
,
M.
,
Yu
,
G.
,
Allehaibi
,
M. O.
, and
Metghalchi
,
H.
,
2017
, “
Flame Structure and Laminar Burning Speed of Gas to Liquid Fuel Air Mixtures at Moderate Pressures and High Temperatures
,”
Fuel
,
209
, pp.
529
537
. 10.1016/j.fuel.2017.08.009
21.
Bai
,
Z.
,
Wang
,
Z.
,
Yu
,
G.
,
Yang
,
Y.
, and
Metghalchi
,
H.
,
2018
, “
Experimental Study of Laminar Burning Speed for Premixed Biomass/Air Flame
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022206
. 10.1115/1.4041412
22.
Wang
,
Z.
,
Bai
,
Z.
,
Yu
,
G.
,
Yelishala
,
S.
, and
Metghalchi
,
H.
,
2019
, “
The Critical Pressure at the Onset of Flame Instability of Syngas/Air/Diluent Outwardly Expanding Flame at Different Initial Temperatures and Pressures
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082207
. 10.1115/1.4042720
23.
Wang
,
Z.
,
Yelishala
,
S. C.
,
Yu
,
G.
,
Metghalchi
,
H.
, and
Levendis
,
Y. A.
,
2019
, “
Effects of Carbon Dioxide on Laminar Burning Speed and Flame Instability of Methane/air and Propane/air Mixtures: A Literature Review
,”
Energy Fuels
,
33(
10), pp.
9403
9418
. 10.1021/acs.energyfuels.9b02346
24.
Yelishala
,
S. C.
,
Wang
,
Z.
,
Metghalchi
,
H.
,
Levendis
,
Y. A.
,
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2019
, “
Effect of Carbon Dioxide on the Laminar Burning Speed of Propane–Air Mixtures
,”
ASME J. Energy Resour. Technol.
,
141
(
8)
, p.
082205
. 10.1115/1.4042411
25.
Goodwin
,
D. G.
,
Moffat
,
H. K.
, and
Speth
,
R. L.
,
2017
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes, Version 2.3.0
,” http://www.cantera.org
26.
Ju
,
F.
,
Fan
,
X.
,
Chen
,
Y.
,
Wang
,
T.
,
Tang
,
X.
,
Kuang
,
A.
, and
Ma
,
S.
,
2018
, “
Experimental Investigation on a Heat Pump Water Heater Using R744/R290 Mixture for Domestic Hot Water
,”
Int. J. Therm. Sci.
,
132
, pp.
1
13
. 10.1016/j.ijthermalsci.2018.05.043
27.
Kim
,
S. G.
, and
Kim
,
M. S.
,
2002
, “
Experiment and Simulation on the Performance of an Autocascade Refrigeration System Using Carbon Dioxide as a Refrigerant
,”
Int. J. Refrig.
,
25
(
8
), pp.
1093
1101
. 10.1016/S0140-7007(01)00110-4
28.
Afroz
,
H. M. M.
,
Miyara
,
A.
, and
Tsubaki
,
K.
,
2008
, “
Heat Transfer Coefficients and Pressure Drops During In-Tube Condensation of CO2/DME Mixture Refrigerant
,”
Int. J. Refrig.
,
31
(
8
), pp.
1458
1466
. 10.1016/j.ijrefrig.2008.02.009
29.
Kim
,
J. H.
,
Cho
,
J. M.
,
Lee
,
I. H.
,
Lee
,
J. S.
, and
Kim
,
M. S.
,
2007
, “
Circulation Concentration of CO2/Propane Mixtures and the Effect of Their Charge on the Cooling Performance in an Air-Conditioning System
,”
Int. J. Refrig.
,
30
(
1
), pp.
43
49
. 10.1016/j.ijrefrig.2006.06.008
30.
Sarkar
,
J. J. J. O. A. R. I. M. E.
,
2010
, “
Review on Cycle Modifications of Transcritical CO 2 Refrigeration and Heat Pump Systems
,”
1
(
1
), pp.
22
29
.
31.
Zhang
,
F.
,
Zhu
,
Y.
,
Li
,
C.
, and
Jiang
,
P.
,
2018
, “
Thermodynamic Optimization of Heat Transfer Process in Thermal Systems Using CO2 as the Working Fluid Based on Temperature Glide Matching
,”
Energy
,
151
, pp.
376
386
. 10.1016/j.energy.2018.03.009
32.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2018
,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0
,
National Institute of Standards and Technology
.
33.
Daly
,
C. A.
,
Simmie
,
J. M.
,
Würmel
,
J.
,
DjebaÏli
,
N.
, and
Paillard
,
C.
,
2001
, “
Burning Velocities of Dimethyl Ether and Air
,”
Combust. Flame
,
125
(
4
), pp.
1329
1340
. 10.1016/S0010-2180(01)00249-8
34.
Saeed
,
K.
, and
Stone
,
R.
,
2007
, “
Laminar Burning Velocities of Propene–Air Mixtures at Elevated Temperatures and Pressures
,”
J. Energy Inst.
,
80
(
2
), pp.
73
82
. 10.1179/174602207X186916
35.
Takizawa
,
K.
,
Tokuhashi
,
K.
, and
Kondo
,
S.
,
2009
, “
Flammability Assessment of CH2CFCF3: Comparison With Fluoroalkenes and Fluoroalkanes
,”
J. Hazard. Mater.
,
172
(
2
), pp.
1329
1338
. 10.1016/j.jhazmat.2009.08.001
36.
Zhao
,
P.
,
Yuan
,
W.
,
Sun
,
H.
,
Li
,
Y.
,
Kelley
,
A. P.
,
Zheng
,
X.
, and
Law
,
C. K.
,
2015
, “
Laminar Flame Speeds, Counterflow Ignition, and Kinetic Modeling of the Butene Isomers
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
309
316
. 10.1016/j.proci.2014.06.021
37.
Bosschaart
,
K. J.
, and
de Goey
,
L. P. H.
,
2004
, “
The Laminar Burning Velocity of Flames Propagating in Mixtures of Hydrocarbons and Air Measured With the Heat Flux Method
,”
Combust. Flame
,
136
(
3
), pp.
261
269
. 10.1016/j.combustflame.2003.10.005
38.
Gillespie
,
F.
,
Metcalfe
,
W. K.
,
Dirrenberger
,
P.
,
Herbinet
,
O.
,
Glaude
,
P.-A.
,
Battin-Leclerc
,
F.
, and
Curran
,
H. J.
,
2012
, “
Measurements of Flat-Flame Velocities of Diethyl Ether in Air
,”
Energy
,
43
(
1
), pp.
140
145
. 10.1016/j.energy.2012.01.021
39.
Davis
,
S. G.
, and
Law
,
C. K.
,
1998
, “
Determination of and Fuel Structure Effects on Laminar Flame Speeds of C1 to C8 Hydrocarbons
,”
Combust. Sci. Technol.
,
140
(
1–6
), pp.
427
449
. 10.1080/00102209808915781
40.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Grana
,
R.
,
Cuoci
,
A.
,
Faravelli
,
T.
,
Kelley
,
A. P.
, and
Law
,
C. K.
,
2012
, “
Hierarchical and Comparative Kinetic Modeling of Laminar Flame Speeds of Hydrocarbon and Oxygenated Fuels
,”
Prog. Energy Combust. Sci.
,
38
(
4
), pp.
468
501
. 10.1016/j.pecs.2012.03.004
41.
Mulroy
,
W. J.
,
Domanski
,
P. A.
, and
Didion
,
D. A.
,
1994
, “
Glide Matching with Binary and Ternary Zeotropic Refrigerant Mixtures Part 1. An Experimental Study
,”
Int. J. Refrig.
,
17
(
4
), pp.
220
225
. 10.1016/0140-7007(94)90037-X
42.
Buschmeier
,
M.
,
Mulroy
,
W.
, and
Didion
,
D.
,
1990
,
An Initial Laboratory Evaluation of a Single Solution Circuit Cycle for Use With Nonazeotropic Refrigerants
,
National Institute of Standards and Technology
.
43.
Sarkar
,
J.
, and
Bhattacharyya
,
S.
,
2009
, “
Assessment of Blends of CO2 With Butane and Isobutane as Working Fluids for Heat Pump Applications
,”
Int. J. Therm. Sci.
,
48
(
7
), pp.
1460
1465
. 10.1016/j.ijthermalsci.2008.12.002
44.
Didion
,
D. A.
, and
Bivens
,
D. B.
,
1990
, “
Role of Refrigerant Mixtures as Alternatives to CFCs
,”
Int. J. Refrig.
,
13
(
3
), pp.
163
175
. 10.1016/0140-7007(90)90071-4
45.
Yelishala SC
,
M. X.
,
Wang
,
Z.
,
Levendis
,
Y. A.
, and
Metghalchi
,
H.
,
2018
, “
Assessment of Blends of Hydrocarbons and CO2 as Alternative Natural Refrigerants
,”
Paper Presented at the ASTFE Third Thermal and Fluids Engineering Conference (TFEC)
,
Fort Lauderdale, FL
.
46.
Onaka
,
Y.
,
Miyara
,
A.
,
Tsubaki
,
K.
, and
Koyama
,
S.
,
2009
, “
Analysis of Heat Pump Cycle Using CO2/DME Mixture Refrigerant
,”
Trans. Jpn. Soc. Refrig. Air Cond. Eng.
,
26
(
3
), pp.
245
252
.
47.
Domaniski
,
P. A.
,
Brown
,
J. S.
, and
Lemmon
,
E. W.
,
2018
,
CYCLE_D: NIST Vapor Compression Cycle Design Program Version 6
.
You do not currently have access to this content.