Abstract

Proper selection of the drilling parameters and dynamic behavior is a critical factor in improving drilling performance and efficiency. Therefore, the development of an efficient artificial intelligence (AI) method to predict the appropriate control parameters is critical for drilling optimization. The AI approach presented in this paper uses the power of optimized artificial neural networks (ANNs) to model the behavior of the non-linear, multi-input/output drilling system. The optimization of the model was achieved by optimizing the controllers (combined genetic algorithm (GA) and pattern search (PS)) to reach the global optima, which also provides the drilling planning team with a quantified recommendation on the appropriate optimal drilling parameters. The optimized ANN model used drilling parameters data recorded real-time from drilling practices in different lithological units. Representative portions of the data sets were utilized in training, testing, and validation of the model. The results of the analysis have demonstrated the AI method to be a promising approach for simulation and prediction of the behavior of the complex multi-parameter drilling system. This method is a powerful alternative to traditional analytic or real-time manipulation of the drilling parameters for mitigation of drill string vibrations and invisible lost time (ILT). The utilization can be extended to the field of drilling control and optimization, which can lead to a great contribution of 73% in reduction of the drilling time.

References

1.
Ashena
,
R.
,
Rabiei
,
M.
,
Rasouli
,
V.
, and
Mohammadi
,
A. H.
,
2020
, “
Optimization of Drilling Parameters Using an Innovative GA-PS Artificial Intelligence Model
,”
Paper Presented at the Virtual SPE Asia Pacific Oil & Gas Conference and Exhibition, 17–19
, Paper No. SPE 202325-MS.
2.
Bybee
,
K.
,
2011
, “
Real-Time Optimization of Drilling Parameters
,”
Soc. Pet. Eng.
,
63
(
2
), pp.
48
49
. 10.2118/0211-0048-JPT
3.
Eren
,
T.
, and
Ozbayoglu
,
M. E.
,
2010
, “
Real Time Optimization of Drilling Parameters During Drilling Operations
,”
Paper Presented at the SPE Oil and Gas India Conference and Exhibition
,
Mumbai, India
, Jan.
20–22
, Paper No. SPE 129126-MS.
4.
Gidh
,
Y. K.
,
Ibrahim
,
H.
, and
Purwanto
,
A.
,
2011, January 1
, “
Real-Time Drilling Parameter Optimization System Increases ROP by Predicting/Managing Bit Wear
,”
Paper Presented at the SPE Digital Energy Conference and Exhibition
,
The Woodlands, TX
, Apr.
19–21
, Paper No. SPE 142880-MS.
5.
Koederitz
,
W. L.
, and
Johnson
,
W. E.
,
2011
, “
Real-Time Optimization of Drilling Parameters By Autonomous Empirical Methods
,”
SPE/IADC Drilling Conference and Exhibition
,
Amsterdam, The Netherlands
.
6.
Wiktorski
,
E.
,
Kuznetcov
,
A.
, and
Sui
,
D.
,
2017
, “
ROP Optimization and Modeling in Directional Drilling Process
,”
Paper Presented at the SPE Bergen One Day Seminar
,
Bergen, Norway
,
Apr. 5
, Paper No. SPE 85909-MS.
7.
Abbas
,
A. K.
,
Rushdi
,
S.
,
Alsaba
,
M.
, and
Al Dushaishi
,
M. F.
,
2019
, “
Drilling Rate of Penetration Prediction of High-Angled Wells Using Artificial Neural Networks
,”
ASME. J. Energy Resour. Technol.
,
141
(
11
), p.
112904
. 10.1115/1.4043699
8.
Yi
,
P.
,
Kumar
,
A.
, and
Samuel
,
R.
,
2014
, “
Realtime Rate of Penetration Optimization Using the Shuffled Frog
,”
SPE Intelligent Energy Conference & Exhibition
,
Utrecht, The Netherlands
.
9.
Al-AbdulJabbar
,
A.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
,
Abdelgawad
,
K.
, and
Al-Majed
,
A.
,
2018
, “
A Robust Rate of Penetration Model for Carbonate Formation
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042903
. 10.1115/1.4041840
10.
Ashena
,
R.
,
Thonhauser
,
G.
,
Ghalambor
,
A.
,
Rasouli
,
V.
, and
Manasipov
,
R.
,
2019
, “
Determination of Maximum Allowable Safe Core Retrieval Rates
,”
SPE Res. Eval. Eng.
,
22
(
2
), pp.
548
564
. 10.2118/189480-PA
11.
Ashena
,
R.
,
Lotfi
,
M.
,
Nascimento
,
A.
, and
Ghalambor
,
A.
,
2020
, “
Prevention of Core Jamming and Damage During Coring Operations by Optimization of Drilling Parameters—Analysis of Case Studies
,”
Paper Presented at the SPE Formation Damage Conference and Exhibition
,
Lafayette, LA
,
Feb. 19
.
12.
Khaksar Manshad
,
A.
,
Rostami
,
H.
,
Niknafs
,
H.
, and
Mohammadi
,
A. H.
,
2017
, “Integrated Lost Circulation Prediction in Oil Field Drilling Operation,”
Heavy Oil: Characteristics, Production and Emerging Technologies
.
Nova Science Publishers, Inc.
,
New York
.
13.
Bourgoyne
,
A. T.
,
Millheim
,
K. K.
,
Chenevert
,
M. E.
, and
Young
,
F. S.
,
1991
,
Applied Drilling Engineering
, Vol.
2
,
SPE
, pp.
221
230
.
14.
Bataee
,
M.
,
Kamyab
,
M.
, and
Ashena
,
R.
,
2010
, “
Investigation of Various ROP Models and Optimization of Drilling Parameters for PDC and Roller-Cone Bits in Shadegan Oil Field
,”
International Oil and Gas Conference and Exhibition
,
Beijing, China
.
15.
Khaksar Manshad
A.
,
Rostami
H.
,
Toreifi
H.
,
Mohammadi
A.H.
2017
. “Optimization of Drilling Penetration Rate in Oil Fields Using Artificial Intelligence Technique,”
Heavy Oil: Characteristics, Production and Emerging Technologies
.
Nova Science Publishers, Inc.
,
New York
.
16.
Ashena
,
R.
, and
Thonhauser
,
G.
,
2015
, “Application of Artificial Neural Networks in Geoscience and Petroleum Industry,”
Artificial Intelligent Approaches in Petroleum Geosciences
,
C.
Cranganu
,
H.
Luchian
, and
M. E.
Breaban
, eds.,
Springer International Publishing
, Chap. 4.
17.
Goldberg
,
D. E.
,
1989
,
Genetic Algorithm in Search, Optimization and Machine Learning
,
Addison Wesley
,
New York
.
18.
Van Rooij
,
V. A. J. F.
,
Jain
,
L. C.
, and
Johnson
,
R. P.
,
1996
,
Neural Network Training Using Genetic Algorithms
,
World Scientific Publishing Co. Pvt. Ltd.
,
Singapore
.
19.
Vonk
,
E.
,
Jain
,
L. C.
, and
Johnson
,
R. P.
,
1997
,
Automatic Generation of Neural Network Architecture Using Evolutionary Computation
,
World Scientific Publishing Co. Pvt. Ltd.
,
Singapore
.
20.
Bornholdt
,
S.
, and
Graudenz
,
D.
,
1992
, “
General Asymmetric Neural Networks and Structure Design by Genetic Algorithms
,”
Neural Netw.
,
5
(
2
), pp.
327
334
. 10.1016/S0893-6080(05)80030-9
21.
Marshall
,
S. J.
, and
Harrison
,
R. F.
,
1991
, “
Optimization and Training of Feed-Forward Neural Networks by Gas
,”
Proceeding of the IEE Second International Conference on Artificial Neural Networks
,
Bournemouth, UK
, pp.
39
43
.
22.
Miller
,
G.
,
Todd
,
P.
, and
Hedge
,
S.
,
1989
,
Designing Neural Networks Using Genetic Algorithms
,
Morgan Kaufmann Publishers Inc.
,
San Francisco, CA
, pp.
379
384
.
23.
Hardalac
,
F.
,
2009
, “
Classification of Educational Backgrounds of Students Using Musical Intelligence and Perception With the Help of Genetic Neural Networks
,”
Exp. Syst. Appl.
,
36
(
3
), pp.
6708
6713
. 10.1016/j.eswa.2008.08.061
24.
Luchian
,
H.
,
Bautu
,
A.
, and
Bautu
,
E.
,
2015
, “Genetic Programming Techniques With Applications in the Oil and Gas Industry,”
Artificial Intelligent Approaches in Petroleum Geosciences
,
C.
Cranganu
,
H.
Luchian
, and
M. E.
Breaban
, eds.,
Springer International Publishing
, Chap. 3.
25.
Ashena
,
R.
, and
Moghadasi
,
J.
,
2011
, “
Bottom Hole Pressure Prediction Using Evolved Neural Networks by Real Coded Ant Colony Optimization and Genetic Algorithm
,”
J. Petrol. Sci. Eng.
77
, pp.
375
385.
10.1016/j.petrol.2011.04.015
26.
Findler
,
N. V.
,
Lo
,
C.
, and
Lo
,
R.
,
1987
, “
Pattern Search for Optimization
,”
Math. Computers Simulation
,
29
(
1
), pp.
41
50
. 10.1016/0378-4754(87)90065-6
27.
Chinneck
,
J. W.
,
2009
, “Practical Optimization: A Gentle Introduction,”
Pattern Search for Unconstrained NLP
,
Carleton University
, Chap. 17.
28.
Swarna Priya
,
R. M.
,
Reddy Maddikunta
,
P. K.
,
Parimala
,
M.
,
Koppu
,
S.
,
Gadekallu
,
T. R.
,
Chowdhary
,
C. L.
, and
Alazab
,
M.
,
2020
, “
An Effective Feature Engineering for DNN Using Hybrid PCA-GWO for Intrusion Detection in IoMT Architecture
,”
Computer Communications
,
160
, pp.
139
149
. 10.1016/j.comcom.2020.05.048
29.
Gadekallu
,
T. R.
,
Rajput
,
D. S.
,
Reddy
,
M. P. K.
, et al.
,
2020
, “
A Novel PCA–Whale Optimization-Based Deep Neural Network Model for Classification of Tomato Plant Diseases Using GPU
,”
J. Real-Time Image Proc.
, Special Issue, pp.
1
13
. 10.1007/s11554-020-00987-8
30.
Bhattacharya
,
S.
,
Siva
,
S. R. K.
,
Maddikunta
,
P. K. R.
,
Kaluri
,
R.
,
Singh
,
S.
,
Gadekallu
,
T. R.
,
Alazab
,
M.
, and
Tariq
,
U.
,
2020
, “
A Novel PCA-Firefly Based XGBoost Classification Model for Intrusion Detection in Networks Using GPU
,”
Electronics
,
9
(
2
), p.
219
. 10.3390/electronics9020219
31.
Tang
,
M.
,
Alazab
,
M.
, and
Luo
,
Y.
,
1 Sept. 2019
, “
Big Data for Cybersecurity: Vulnerability Disclosure Trends and Dependencies
,”
IEEE Trans. Big Data
,
5
(
3
), pp.
317
329
. 10.1109/TBDATA.2017.2723570
You do not currently have access to this content.